
Math 563 Lecture Notes
Polynomial Interpolation: Piecewise (splines)

Spring 2020

Overview

The point: An introduction to splines and a sample of the various approaches. The point is
that cubic splines strike a good balance between efficiency and accuracy, and are reasonably
straightforward to construct - they are therefore a good ‘default choice’ for interpolating data.

Related reading: Section 8.7.1 of Quarteroni for the splines discussed here, plus 8.7.2,
8.8 for the more technical B-splines (not covered here).

1 Splines

A good way to avoid the problem of Runge’s example is to use only low degree polynomials
to interpolate. Instead, we break up the interval [a, b] into sub-intervals

Ii = [xi, xi+1], i = 0, · · · , n− 1 (1)

and define a ‘piecewise’ interpolant p(x) by

p(x) = pi(x) for x ∈ Ii, i = 0, · · · , n− 1

where each pi(x) is some function to be constructed on the sub-interval Ii. For later use,
also define the ‘grid spacing’ and max. grid spacing

hi = xi+1 − xi, hmax = max
0≤i≤n−1

hi.

Now, each ‘piece’ pi is defined only on an interval of width hi which shrinks to zero as the
number of points →∞, so any reasonable approximation will have good convergence.

The main questions are:

• What are good choices of functions to use (that balance efficiency/accuracy well)?

• How does the error behave as the max. grid spacing hmax → 0?

• How does one efficiently compute and evaluate the interpolant?

1

1.1 Piecewise linear interpolant

The simplest piecewise interpolant is the piecewise linear one. We choose

pi(x) = the linear interpolant for xi, xi+1 in Ii.

The construction is more or less trivial; just connect the data by lines.

Error analysis Let hj = xj+1 − xj be the interval width. By the Lagrange error formula,

|p(x)− f(x)| ≤ f ′′(ηi(x))

4
h2i for x ∈ Ii,

where ηi ∈ Ii after bounding

|(x− xi)(x− xi+1)| ≤ h2i /2.

Assuming |f ′′(x)| ≤M ,

|p(x)− f(x)| ≤ M

4
h2max for x ∈ [a, b].

Thus as the max spacing goes to zero, the error goes to zero like O(h2max). Since the number
of points scales with 1/h, the error goes to zero like O(1/n2) as n → ∞. We are using the
shrinking of the interval size rather than an increase of degree to improve the error.

However, note that p′(x) is not defined at the xj’s. The approximation is not differentiable,
which may not be ideal. To improve it, we need a smoother (higher degree) interpolating
polynomial that can be further adjusted.

1.2 hats

There is some hidden structure behind the linear interpolant. Suppose, generally, we want
to construct an interpolant in the form

p(x) =
n∑

i=0

ciφi(x)

where each φi(x) is a local basis function that has ‘compact support’: it is non-zero only
in a small interval around xi (using only a few nearby sub-intervals).

2

We can cast the piecewse linear interpolant in terms of the ‘local basis’ by defining basis
functions φi such that

φi is a piecewise linear function,

φi is non-zero only for [xi−1, xi+1],

φi(xi) = 1, φi(xi±1) = 0.

This function is easy to construct: it is a piecewise linear ‘hat’

φj =


xj+1 − x
xj+1 − xj

x > xj

x− xj−1
xj − xj−1

x < xj
, φj = 0 otherwise

suitably modified at the endpoints (half hats).

Then the piecewise linear interpolant - as with the Lagrange basis - is given by

p(x) =
n∑

i=0

fiφi(x).

This is true by construction; the φi’s are piecewise linear so p(x) is also piecewise linear and

p(xj) =
n∑

i=0

fiφi(xj) =
n∑

i=0

fiδij = fj

by the properties of φi (and δij is the Kronecker delta).

Aside: elements The hats here are simple examples of piecewise linear ‘elements’ used in
the finite element method, where a basis of this kind (local, made of simple functions) is
used to represent solutions to differential equations.

3

1.3 PCHIPs

We can improve the approximation by upgrading the degree to 3. Recall that given data on
f and f ′ at two points, there is a unique ‘cubic Hermite interpolating polynomial’ (CHIP).
Gluing these pieces together creates the piecewise CHIP (PCHIP). Because the derivatives
also match, the PCHIP is a continuous derivative, so it is much smoother than the linear
approximation.1

What if f ′ is not known? If f ′(x) is not available, a derivative approximation can be
used. One has to be careful, however, to use the right method to ensure the spline is
reasonable; the discussion here is involved and for simplicity, we will assume f ′ is known
(see: monotonicity preserving splines). One choice, for instance, is the centered difference
f ′ ≈ (fi+1 − fi−1)/(2h) for equally spaced points.

Here, we define

pi(x) = CHIP for [xi, xi+1] with data fi, f
′
i and fi+1, f

′
i+1.

Each CHIP can be written in Newton form as

pi(x) = fi + bi(x− xi) + ci(x− xi) + di(x− xi)2(x− xi+1)

or in terms of the Hermite basis as

pi(x) = fiq1,i + f ′iq2,i + fi+1q3,i + f ′i+1q4,i

where {qk,i, k = 0, 1, 2, 3} are the basis polynomials (see HW) that can be computed in
advance (the formulas are not complicated).

In the Newton case, divided differences can be used; the table is

f Df D2f D3f
xi fi
xi fi f ′i
xi+1 fi+1 f [xi, xi+1] · · ·
xi+1 fi+1 f ′i+1 · · · · · ·

with the ‘derivative replacement’ entries boxed and the · · · are computed in the usual way
(e.g. the top entry is (f [xi, xi+1]− f ′i)/hi) with hi = xi+1 − xi).

The other basis has the advantage that most of the computation is independent of f .

1This method is a good general purpose interpolation scheme. Matlab’s interp1, for instance, uses a
version of PCHIP that estimates the derivatives.

4

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

30 40 50 60 70 80

0.005

0.015

0.025

slope 2

Figure 1: Left: linear and CHIP approximations with n = 7 to Runge’s example (f(x) =
1/(1 + 25x2). Right: error plot (loglog) for the piecewise linear case with a reference line.

The error in the CHIP can be shown2 to have the form

E =
f (4)

4!
(x− xi)2(x− xi+1)

2

(similar to the Lagrange formula, so it follows that

|error| ≤ M

96
h4max, assuming |f (4)(x)| ≤M

where hmax denotes the maximum spacing. In particular, the error scales like the fourth-
power of h, which is quite good. For this reason, cubic splines are a preferred method of
interpolation - they have a good balance of simplicity (fast to compute) and accuracy.

One can also use a spline to estimate the derivative. By the construction, p′ is continu-
ous. It is also easily computed, and the error turns out to behave nicely (see HW).

Aside: Local basis for cubics? A similar local basis can be constructed for cubic splines,
analogous to the hat functions for piecewise linear interpolants. Splines based on this struc-
ture are called B-splines. The details are somewhat involved (compared to the simpler
hats) and will not be pursued here. Note that PCHIPs and natural splines (below) can be
constructed directly, without appeal to any underlying basis.

2The proof is similar to the Lagrange formula; note that it is the same, but with ‘repeated’ nodes xi, xi+1

since there are two elements of data at each node.

5

1.4 natural splines

A variant on the PCHIP strategy relaxes the required data by asking only for the function
values. The pieces are cubic polynomials

pi(x) = ai + bi(x− xi) + ci(x− xi)2 + di(x− xi)3

and instead of the values of f ′i matched, we instead impose ‘continuity’ conditions to ensure
the pieces are smooth (up to second derivatives) across the nodes.

The conditions imposed are (where p(x) is the full interpolant):

i) p interpolates the data: p(xj) = fj for the nodes xj

ii) p, p′ and p′′ are continuous in (a, b) (in particular, at x1, · · · , xn−1)

iii) some ‘boundary conditions’ at the endpoints x0 and xn

Boundary conditions: No continuity conditions are imposed at the endpoints. One can
check (exercise) that the problem is undertermined if only (i) and (ii) are imposed - we are
short by two equations.

There are several common choices. One is the natural spline boundary condition

p′′(x0) = p′′(xn) = 0. (2)

The analogy is to a string pinned at the nodes

The system: Consider the natural spline. The unknowns to solve for are bi, ci and di
for each piece. Imposing condition (i) gives ai = fi and one more equation pn−1(xn) = fn.
Imposing condition (ii) at the right endpoint of each sub-interval Ii for i = 0, · · · , n−2 gives

p′′i (xi+1) = p′′i+1(xi+1) =⇒ ci + 3dihi = ci+1, 0 ≤ i < n− 1 (3)

p′i(xi+1) = p′i+1(xi+1) =⇒ bi + 2cihi + 3dih
2
i = bi+1, 0 ≤ i < n− 1 (4)

pi(xi+1) = pi+1(xi+1) =⇒ fi + bihi + cih
2
i + dih

3
i = fi+1, 0 ≤ i < n (5)

where hi = xi+1− xi (not that the i = n− 1 case of (5) is the interpolation property (i), not
(ii)). The boundary conditions (2) require that

c0 = 0, cn−1 + 3dn−1hn−1 = 0.

While messy, the critical point is that the above is a linear system for the coefficients and
there are exactly enough equations (see homework). Moreover, each coefficient is related
only to adjacent ones, so the system is sparse - if written in matrix form, most of the entries
of the matrix are zero.

In a better form: We can simplify further to better see the structure. Eliminating di

6

is trivial using (3). One can also eliminate bi (see the nasty details in subsection 1.5 to
obtain a system only for the c’s of the form

uici−1 + vici + wici+1 = ri, i = 1, · · · , n− 1

with the understanding that c0 = cn = 0 (so the first term drops out when i = 0 and the
last term drops when i = n). The coefficients are given in the referenced section.

In matrix form, this system is

Ac = r, A =



v1 w1 0 0 · · · 0
u2 v2 w2 0 · · · 0

0
.

...
...

. 0
0 · · · 0 un−2 vn−2 wn−2
0 · · · · · · 0 un−1 vn−1


with c = (c1, · · · , cn−1). The matrix A is tri-diagonal: it has non-zero entries only up to
one diagonal above/below the main one. By standard methods (e.g. Gaussian elimination3),
this system can be solved in O(n) operations (and one can show that the system always
has a unique solution). Since there are also that many coefficients to solve for, this amount
of work is ideal. Thus, the fact that the equations are coupled together does not pose a
problem, since there is a good way to compute the solution to the system of n equations.

Comparison to CHIPs: Unlike the CHIP construction, all the pieces are linked together,
so we must solve one large linear system at once. This requires more from the writer of the
code, but is not any less efficient because the tri-diagonal system is easy to solve numerically.
The natural spline also has a continuous second derivative.

3You’ll occasionally see a version of this referred to as the Thomas algorithm. See LU factorization for
tri-diagonal/banded matrices for the details.

7

1.5 Natural splines: the details

Plug in for di to get

hici + hici+1 = bi+1 − bi

hibi + h2i ci +
h2i
3

(ci+1 − ci) = fi+1 − fi

with c0 = cn = 0. Now write

hibi−1 + hihi−1ci−1 +
hihi−1

3
(ci − ci−1) =

hi
hi−1

(fi − fi−1)

and
hi−1(ci + ci−1) = bi − bi−1.

Then

hihi−1(ci + ci−1) + h2i ci − hihi−1ci−1 +
h2i
3

(ci+1 − ci)−
hihi−1

3
(ci − ci−1) = ri

where

ri = fi+1 − fi −
hi
hi−1

(fi − fi−1).

Group by c’s:(
hihi−1 − hihi−1 +

1

3
hihi−1

)
ci−1 +

(
hihi−1 + h2i −

h2i
3
− hihi−1

3

)
ci +

(
h2i
3

)
ci+1 = ri

1

3
hihi−1 · ci−1 +

(
2

3
hihi−1 +

2

3
h2i

)
ci +

1

3
h2i · ci+1 = ri.

Multiply all this by 3/hi to get the standard form:

hi−1ci−1 + 2(hi−1 + hi)ci + hici+1 =
3

hi
(fi+1 − fi)−

3

hi−1
(fi − fi−1)

with c0 = cn = 0. This is a linear system (n − 1) equations for c = (c1, · · · , cn−1) that can
be solved efficiently. From here, the rest of the coefficients are computed by the formulas

bi =
1

hi
(fi+1 − fi)− hici −

hi
3

(ci+1 − ci)

di =
ci+1 − ci

3hi
.

Furthermore, note that the associated matrix is diagonally dominant since

2(hi−1 + hi) > hi−1 + hi

so it follows that the system always has a unique solution and that the numerical procedure
is well-behaved (it is an ‘easy’ system to solve numerically).

8

	Splines
	Piecewise linear interpolant
	hats
	PCHIPs
	natural splines
	Natural splines: the details

