
Math 563 Lecture Notes
Numerical methods for boundary value problems

Jeffrey Wong

April 22, 2020

Related reading: Leveque, Chapter 9.

1 PDEs: an introduction

Now we consider solving a parabolic PDE (a time dependent diffusion problem) in a finite
interval. For this discussion, we consider as an example the heat equation

ut = uxx, x ∈ [0, L], t > 0

u(0, t) =u(L, t) = 0, t > 0

u(x, 0) = f(x)

(HD)

to be solved for x ∈ [0, L] and t > 0. Due to the initial condition at t = 0, we can think of
the heat equation as taking an initial function u(x, 0) = f(x) and evolving it over time, i.e.
the function u(·, t) defined in the interval [0, L] is changing as t increases.

1.1 The method of lines

The fact that the heat equation looks like an IVP of sorts for the function u(·, t) suggests
that IVP can be used. To do so, we can use the method of lines:

1) Discretize the PDE in space on a grid {xj}

2) Write down a system of ODEs for the functions u(xj, t) from the discretization, BCs

3) Solve the system of IVPs for u(xj, t) (by any reasonable method)

We have already seen step (1) in discussing finite differences. The process is similar here.
Take a uniform mesh

xj = jh, h = L/(N + 1)

and let uj(t) denote the approximation to u(xj, t). Using centered differences, we get the
(space) discretized system

duj
dt

=
uj+1(t)− 2uj(t) + uj−1(t)

h2
, j = 1, · · ·N

1

along with u0(t) = uN(t) = 0 from the BCs. Letting u = (u1, · · · , uN), we have a system

du

dt
= Au, A =

1

h2

−2 1 0 · · · 0
1 −2 1 · · · 0

0
.

...
0 · · · 1 −2 1
0 · · · 0 1 −2

with initial conditions uj(0) = f(xj). This is just a system of ODEs that can be solved by
standard methods. The catch is that because the system is large and A has a particular
structure, some methods may work better than others. Two possibilities are

• Forward time, centered space (FTCS), obtained using Euler’s method. Letting ukj
denote u(xj, tk), we get

uk+1
j − ukj

∆t
=
ukj+1 − 2ukj + ukj−1

∆x2

• Backward time, centered space (BTCS), obtained using Backward Euler. Letting
ukj denote u(xj, tk), we get

ukj − uk−1
j

∆t
=
ukj+1 − 2ukj + ukj−1

∆x2

Finite difference formulas can be represented by a useful diagram called a stencil. Stencils
for FTCS and BTCS are shown below; they depict which step is the ‘current time’ (indicat-
ing which methods are explicit/implicit) and which grid points are involved with the PDE
approximation at each (x, t).

1.2 stability: the hard way

To better understand the method, we need to understand its stability. Unfortunately, ap-
plying stability theory for IVPs requires knowing the structure of the eigenvalues of A. Let’s
see how this would go for the FTCS scheme.

For the FTCS scheme applied to the Dirichlet problem (HD), we have

uk = uk−1 +
∆t

∆x2
Auk−1.

Letting β = ∆t/∆x2, we get

uk = V uk−1, V = I + βA =

1− 2β β 0 · · · 0
β 1− 2β β · · · 0

0
.

...
0 · · · β 1− 2β β
0 · · · 0 β 1− 2β

2

If β is small enough then V is diagonally dominant. However, we really want to show that

‖V ‖ ≤ 1 or max |λj| ≤ 1

to demonstrate that the method is stable. Note that if β < 1/2 then ‖V ‖∞ = 1 (consider
the maximum absolute row sum), so

‖uk‖∞ ≤ ‖uk−1‖∞.

However, this is unsatisfactory, as it is just a sufficient condition. To be more precise, we
would need to bound the eigenvalues, which requires a better understanding of the eigenvec-
tors/values. While such an analysis is possible, there is a less rigorous but simpler way to
show stability.

1.3 Convergence

First, we should identify what is the right notion of stability. The definition of convergence
is the same as in ODEs. Suppose Uk

n ≈ u(x, t) approximates the solution to a PDE in an
interval [0, T], using time/space steps ∆t and ∆x. Then if

max
k
|Uk

n − u(xn, tk)| = O(∆xp + ∆tq) for k such that k∆t ≤ T (1.1)

we say the method converges with order p in space (x) and order q in time (t).

Convergence matters in the limit when both ∆x and ∆t go to zero. Technically, the bound
(1.1) only needs to hold for ∆’s taken to zero at certain rates. In practice, there is some link
between the two, e.g.

∆t = C∆x2.

which allows us to think of convergence in the limit of ∆t→ 0 (rather than as ∆t,∆x→ 0),
with the other ∆ tied to the first.

Recall that for ODEs, convergence requires two conditions - consistency and zero-stability.
A similar result holds for linear PDEs like the heat equation as well, but we need to identify
what is meant by ‘stability’.

First, the consistency part is easy - it is the same as for ODEs. The local truncation
error is the error obtained by plugging the exact solution into the difference equation (with
the same ‘divide by ∆t’ convention). For instance, for

ut = uxx

the FTCS method
Uk+1
n − Uk

n

∆t
=
Uk
n+1 − 2Uk

n + Uk
n−1

∆x2

has a truncation error defined by

uk+1
n − ukn

∆t
=
ukn+1 − 2ukn + ukn−1

∆x2
+ τnk

3

where ukn = u(xn, tk) denotes the exact solution. Using the error calculations from finite
differences for derivatives, we obtain

τ =
∆t

2
utt(xn, tk)−

∆x2

12
uxxxx(xn, tk) + · · ·

= (
∆t

2
− ∆x2

12
)uxxxx +O(∆t2 + ∆x4).

Note that the PDE ut = uxx was used to simplify utt = uxxt = (ut)xx = uxxxx. In particular,

τ = O(∆t+ ∆x2)

if the solution u is smooth enough (which is the case because according to the properties of
the heat equation). Thus, the method is consistent, first order in time and second order
in space.

Stability is more subtle, and departs from the ODE case a bit. Suppose a method for a
linear PDE takes the form

~Uk+1 = V ~Uk + b (1.2)

where V, b may depend on ∆x and ∆t. Further assume that ∆x is tied to ∆t in the limit
∆t → 0 (e.g. ∆x = ∆t2). Then the method is called (Lax-Richtmeyer) stable in a time
interval [0, T] if there is a constant CT such that

‖V k‖ ≤ CT , for all integers k such that k∆t ≤ T

for sufficiently small values of ∆t. The constant cannot depend on k,∆t. Ideally, we would
like to have the bound

‖V ‖ ≤ 1 + C∆t

from which it would follow (same argument as for ODEs) that

‖V k‖ ≤ ‖V ‖k ≤ (1 + C∆t)k ≤ eCk∆t ≤ eCT .

This definition leads to an important theorem:

Lax Equivalence Theorem: A difference method for a linear PDE of the form (1.2) is
convergent as ∆x,∆t→ 0 if it is consistent and stable in that limit.1

Note that the theory applies only for linear PDEs, for which the associated numerical
method will be a linear iteration like (1.2). For non-linear PDEs, the principle here is still
useful, but the theory is much more challenging since non-linear effects can change stability.

1.4 Connection to ODEs

Recall that for initial value problems, we had

consistency + zero-stability =⇒ convergence.

4

Bounds on eigenvalues and ‘growth rates’ were the subject of absolute stability, which
could be separated from the convergence theorem. The reason is that convergence requires
the error to go to zero in the limit as ∆t→ 0. The ‘eigenvalues’ for the stability condition
are independent of ∆t (e.g. ∂f/∂y for y′ = f(y)), so the absolute stability condition is
automatically satisfied for small enough ∆t.

On the other hand, the Lax ‘stability’ bound is really an absolute stability condition and is
required for convergence. For instance, a sufficient condition is

|λj| ≤ 1 for all eigenvalues of V

to have ‖V ‖2 ≤ 1. This may not be intuitive, but the method of lines provides some insight.
Recall that if we use the method of lines to solve

ut = uxx

with grid points xn, n = 0, · · ·N , the ODEs for Un(t) = u(xn, t) are

~U ′(t) = A~U(t), A =
1

∆x2

−2 1 0 · · · 0
1 −2 1 · · · 0

0
.

...
0 · · · 1 −2 1
0 · · · 0 1 −2

for ~U = (U1, · · · , UN). The eigenvalues of A depend on ∆x - and in particular, the largest
in magnitude grows as ∆x→ 0. Thus, the relevant eigenvalues for absolute stability change
as the grid is refined (∆x→ 0), as do the ‘stiffness’ requirements.

This is why the FTCS method requires ∆t ≤ C∆x2: as ∆x → 0, the largest eigenvalue
in the ‘method of lines’ ODE system grows as ∆x → 0; the Forward Euler time-step must
be made small to compensate.

2 Von Neumann stability analysis

In general, obtaining a bound
‖V k‖ ≤ C

for a family of matrices V depending on ∆x etc. is difficult. The idea of Von Neumann
analysis is to forgo rigor in favor of deriving a simple, practical result.

On an infinite domain, a function u(x, t) can be written in terms of its Fourier transform
û(ω, t) by

u(x, t) =

∫ ∞
−∞

û(ω, t)eiωx dω

and derivatives in x are converted to multiplication by iω:

∂u

∂x
= iωû.

5

The Fourier transform converts a linear, constant coefficient PDE on an infinite interval into
an ODE for its transform, e.g.

ut = uxx → ût = −ω2û.

This suggests that we may gain insight into stability of a numerical method by considering
a single ‘Fourier mode’

Uk
n = αke

iωn∆x (2.1)

and determining the growth of the amplitude αk over time and how it depends on ω. FIrst,
we apply the idea to an example, the FTCS scheme

Uk+1
n − Uk

n

∆t
=
Uk
n+1 − 2Uk

n + Uk
n−1

∆x2
.

First plug the ansatz (2.1) into the formula to get

(αk+1 − αk)eiωnh = βαk(e
iω(n+1)h − 2eiωnh + eiω(n−1)h), β :=

∆t

∆x2
.

Then simplify, yielding

αk+1 = (1 + β(eiωh − 2 + e−iωh))αk

= +β(2 cosωh− 2)αk

It follows that
αk+1 = A(ω)αk

for the ‘amplification factor’

A(ω) = 1− 4β sin2 ωh

2
.

To ensure stability, we need
|A(ω)| < 1 for all ω

or else there will be an unstable mode that may grow. This condition holds if and only if

2∆t

∆x2
≤ 1

which is the stability condition for this scheme and PDE. The required time step scales
with the square of the grid spacing, which puts a severe restriction on ∆t that can be pro-
hibitive even for moderate accuracy (consider, e.g. ∆x = 10−3, integrated up to t = 1).

In contrast, for the backward scheme, we obtain

A(ω) =
1

1 + 4β sin2 ωh
2

which suggests that the backward scheme is stable regardless of grid size and time step.
There is an obvious advantage here! Even though one has to solve a linear system at each
step (since the method is implicit), one can typically use a much larger ∆t.

Here is a summary of the approach:

6

• Plug the ‘Fourier mode’ αke
iωnx into the difference equation2

• Solve for the growth rate of the amplitude αk as a function of ω

• Find the condition on ∆t,∆x such that there is no growth for any ω (i.e. |A(ω| < 1)

There are a few points worth highlighting here, on why the method is not rigorous:

• (Assumption) The PDE is linear (needed for the Fourier transform)

• (Assumption) The modes for each ω are ‘decoupled’, so the equation for each ω can be
solved for A(ω) on its own. (This is a consequence of the Fourier transform derivative
property, plus the PDE needs to be constant coefficient).

• (Hand-waving) The boundary conditions are not considered. This omission can be
critical, as the BCs can effect stability.

As we saw for the test equation y′ = λy, linearization can be used to extend the result to
more general equations. Von Neumann stability can be done on more complicated equa-
tions by ‘freezing’ other variables that are slowly varying, thus obtaining a local stability
result. More caution is required for PDEs, where such approximations can omit key behavior.

In practice, Von-Neumann stability does a good job of predicting stability when it ap-
plies. It tends to be true that if ∆t is chosen too large (so some |A(ω)| is > 1) then the
numerical solution will blow up as this unstable mode grows. On the other hand, if the
stability condition is satisfied, the numerical method does tend to be stable. However, to
reiterate, Von Neumann stability does not imply actual stability; it’s just a good
approximation to it.

2.1 What about other equations?

Numerical methods for PDEs can be subtle because the fundamental numerical properties
depend considerably on the equation (compared to ODEs). For ODEs, the test equation
y′ = λy was enough to get a general sense of how IVP solvers perform.

To illustrate the point, consider the FTCS scheme applied to the advection equation

ut + cux = 0

with some boundary conditions (not relevant for the point). The scheme reads

uk+1
j − ukj

∆t
= −c

ukj+1 − ukj−1

2∆x
.

Setting β = ∆t/∆x and plugging in the Von Neumann analysis ansatz, we get

(A− 1)einωh = −cβ
2

(ei(n+1)ωh − ei(n−1)ωh)

2Since the difference equation for αk will be linear, we can also just plug in Akeiωnx and solve for A from
the start, which is the typical shortcut.

7

=⇒ A(ω) = 1− icβ sin(ωh)

But |A(ω)| > 1 for all ω regardless of ∆t or ∆x, so the method is always unstable. The FTCS
method relies on the diffusion in the heat equation to be stable - without it, the method fails.

Surprisingly, a simple fix can provide stability. We can replace the ukj on the left hand
side by an average to get the ‘Lax-Friedrichs’ scheme

uk+1
j − 1

2
(ukj−1 + ukj+1)

∆t
= −c

ukj+1 − ukj−1

2∆x
.

After a calculation, one obtains an amplification factor A(ω) with the property that

|A(ω)| ≤ 1 for all ω if c
∆t

∆x
< 1.

This is the CFL condition (short for Courant-Friedrichs-Lewy). There is a nice interpre-
tation of the condition as follows: We know that information propagates in the advection
equation at a speed exactly c. In order for a numerical scheme to work properly, it should
be able to propagate information (on the grid) at least at this speed.

Since each grid point at time t + ∆t depends only on adjacent grid points at time t, in-
formation travels at a speed ∆x/∆t on the grid (i.e. it moves by one grid point per time
step). Thus, we must have

‘grid speed’ ≥ advection speed =⇒ ∆x

∆t
≥ c.

Note that the argument here relies fundamentally on the structure of the PDE - it would
not apply to the diffusion equation (or even a convection-diffusion equation ut + cux = uxx),
where the solution does not evolve in the same way.

The idea behind the trick in ‘Lax-Friedrichs’ scheme is revealed by rewriting it in the form

uk+1
j − ukj

∆t
= −c

ukj+1 − ukj−1

2∆x
+

∆x2

2∆t

(
ukj+1 − 2ukj + ukj−1

∆x2

)
.

which is the FTCS scheme applied to that ‘modified PDE’

ut + cux =
∆x2

2∆t
uxx.

If ∆ is chosen to satisfy the CFL condition, then the coefficient on uxx is small, and as
∆t→ 0, it goes to zero. Thus, Lax-Friedrichs can be seen as stabilizing the transport equa-
tion by adding artificial diffusion, which smooths out the solution.

This insight also identifies the key disadvantage of Lax-Friedrichs. We have introduced
an error in the form of diffusion, and this smoothing will tend to smear out the solution,
reducing (correct) sharp features over time. Such a method is called dissipative.

8

2.2 More on modified equations

We can be a bit more precise about the ‘modified equation’. Consider, for example, the
advection equation

ut + cux = 0

and the Lax-Friedrichs scheme

Uk+1
n − 1

2
(Uk

n−1 + Uk
n+1) = −cβ

Uk
n+1 − Uk

n−1

2
.

with β = ∆t/∆x. To obtain the modified equation, we ‘derive in reverse’, plugging in u(x, t)
for U and Taylor expanding. The goal is to find the relevant PDE terms, e.g.

ut, ux, uxx.

Other terms might matter, depending on the analysis. For convenience, let u, ut etc. denote
values at (xn, tk). Using the expansions

Uk+1
n = u+ ∆tut +

1

2
∆t2utt + · · ·

Uk
n±1 = u±∆xux +

1

2
∆x2uxx + · · ·

we get

∆tut +
1

2
∆t2utt −

∆x2

2
uxx = −cβ∆xux − cβ

∆x3

6
uxxx + · · · (2.2)

Now replace utt with c2uxx (from the PDE) and note that β∆x = ∆t; then

ut = −ccux + (
∆x2

2∆t
− c2

2
∆t)uxx + · · ·

which gives us the modified equation

ut + cux =
∆x2

2∆t

(
1− c2β2

)
uxx.

The equation can tell us a necessary condition for stability - if the method is stable, its
modified equation should also be stable (non-negative, diffusion). Here, the diffusion term

(1− c2β2)uxx

must have a positive coefficient to have stability (so c∆t/∆x ≤ 1). Note that we have omit-
ted ‘higher order’ terms, which includes the uxxx term in (2.2).

For the upwind scheme, we get a similar result, but the diffusion coefficient is different
(1− cβ instead).

Notably, the analysis lets us compare ‘how diffusive’ the errors are. For Lax-Friedrichs
and upwind, the diffusion coefficients are

DLF = 1− c2β2, DU = 1− cβ.

If, say, cβ = 1/2 then DLF = 3/4 but DU = 1/4, so upwind is much less diffusive than
Lax-Friedrichs, despite having a lower order of accuracy.

9

2.3 Leapfrog and more

To obtain methods that do not degrade in this way, other approaches are necessary. A full
discussion of the ways to improve solvers for wave-like equations is well beyond the scope
of these notes. However, one more example may be useful. Not all errors are diffusive in
nature; take for instance the leapfrog scheme for

ut + cux = 0

given by
Uk+1
n − Uk−1

n

2∆t
= − c

2∆x
(Uk

n+1 − Uk
n−1)

or more simply, with β = ∆t/∆x,

Uk+1
n − Uk−1

n = −cβ(Uk
n+1 − Uk

n−1)

That is, centered differences are used in both time and space, yielding a ‘multi-step method’
that is consistent with second order accuracy. Plugging in the ansatz

Uk
n = αke

iωnh

for Von Neumann analysis, we get

αk+1 − αk−1 = −cβαk(eiωh − e−iωh)

which gives
αk+1 − αk−1 = −2iθαk, θ = −cβ sinωh.

This difference equation has solutions αk = Ak for two roots A; both need to be ≤ 1 in
magnitude for stability. We get

A2 + 2iθA− 1 = 0 =⇒ A = −iθ ±
√

1− θ2.

It is straightforward to check that |A| ≤ 1 if and only if θ ≤ 1 or, more directly,

∆t

∆x
≤ c

which is the familiar CFL condition. Notice that in this case

|A|2 = θ2 + 1− θ2 = 1 for both roots

which means that the amplification factor is neither dissipative nor unstable.

You may think that this is a good thing for the advection equation, and it is in the sense
that the method will not diffuse like Lax-Friedrichs. However, the pure leapfrog method is
dangerous to use more generally for two reasons. First, it is just on the border of unstable,
so other PDE features (of any more complicated PDE) could cause trouble.

10

Second, the amplification factor has a magnitude of 1, but does have an imaginary part.
A factor ei(···) produces a phase shift, leading to dispersion: a frequency-dependent change
in the wave speed. You can think of it this way: At some point in the Taylor series

e
1

6
∆2utt +

1

6
∆3uttt + · · ·

we need to truncate, and that remaining term will lead to some error, the nature of which de-
pends on the term. For Lax-Friedrichs, we get something like ∆tuxx (diffusion); for leapfrog,
we get ∆2uxxx (dispersion, no diffusion).

(The hand-waving here is made rigorous by use of a modified equation analysis, as
we did above for Lax-Friedrichs).

3 Elliptic problems

We now consider solving Laplace’s (or Poisson’s) equation

∆u = f, (x, y) ∈ Ω

in a domain Ω ⊂ R2 where ∆u = uxx+uyy is the Laplacian. Our ‘simplest’ example problem
will be the homogeneous Dirichlet problem in a rectangle,

uxx + uyy = f, (x, y) ∈ (0,W)× (0, H)

u(x, 0) = u(x,H) = 0, x ∈ (0,W)

u(0, y) = y(W, y) = 0, y ∈ (0, H)

This is a PDE boundary value problem, in contrast to the initial value problem presented
by the heat equation. The approach, therefore, is like the one-d boundary value problems
we solved before:

1) Discretize the domain (in both x and y)

2) Discretize the PDE/BCs to get a system to solve for u

3) Solve the system

The extra dimension makes step (3) a bit more complicated than in 1d. Let’s see how the
straightforward finite difference approach extends to this problem.

First, we define a grid - uniform, for simplicity, with the same number of grid points in
each direction. We set

xj = j∆x, yk = k∆y, ∆x = W/(N + 1), ∆y = H/(N + 1).

Now the PDE can be discretized using centered differences on each term:

uj+1,k − 2uj,k + uj−1.k

∆x2
+
uj,k+1 − 2uj,k + uj.k−1

∆y2
= fjk. (3.1)

11

The left hand side is the five point stencil for the Laplacian, because it approximates ∆u
using five points (the least possible). The BCs here are

u0,k = uN+1,k = uj,0 = uj,N+1 = 0. (3.2)

There are M = N2 unknowns. To construct the system to solve, we must write it in the form
Ax = b, which requires flattening the two-dimensional array uk,j into a one dimensional
vector.

For simplicity, let us suppose that ∆x = ∆y, so the system is

uj+1,k + uj−1,k + uj,k+1 + uj,k−1 − 4uj,k = ∆x2fjk, 1 ≤ j, k ≤ N. (3.3)

Let
v = (u1,1, u1,2, · · · , u1,N , u2,1, u2,2, · · ·u2,N , · · · , uN,1, uN,2, · · · , uN,N)

which stacks the data row-by-row (from the first to the last row). Then (3.3) has the form

Av = ∆x2f

where f contains the values f(xj, yk) in the same ordering as v and A has the following
structure (in terms of N ×N blocks):

A =

D IN 0 · · · 0
IN D IN · · · 0

0
.

...
0 · · · IN D IN
0 · · · 0 IN D

Here IN is an N ×N identity block, 0 is a zero block and D is the N ×N matrix

D =

−4 1 0 · · · 0
1 −4 1 · · · 0

0
.

...
0 · · · 1 −4 1
0 · · · 0 1 −4

Note that the ‘boundary’ terms vanish because of the homogeneous Dirichlet conditions.
Otherwise, there would be some terms added to the right hand side (or adjusted coefficients
in the matrix for Neumann problems).

For non-homogeneous boundary conditions, the boundary terms (3.2) contribute terms to
the RHS. For instance, if

u(x, 0) = f1(x), u(x,H) = f2(x), u(0, y) = g1(y), u(W, y) = g2(y)

then the system is
Av = ∆x2f + b + c

12

where b contains boundary terms from the x = 0 and x = W boundaries and c contains
terms from the y = 0 and y = H boundaries:

b =

~b1

~b2
...
~bN

 , ~bk =

−g1(yk)

0
...

−g2(yk)

 ∈ RN

c =

~c1

0
...
0
~cN

 , ~c1 =

−f1(x1)
−f1(x2)

...
−f1(xN)

 , ~cN =

−f2(x1)
−f2(x2)

...
−f2(xN)

Implementation note: A simple trick to avoid working out the extra boundary terms is to
include explicit ghost points in the data. That is, we store the (N +1)× (N +1) grid Uk

n , in-
cluding the boundary terms. Then, the FD formula (3.1) can be computed for all interior j, k.

That is, we store the array using all the grid points, then compute for interior indices.
At the end of each step, we just need to ensure that the boundary values are updated,
something like:

1) Populate Uk
n with initial values

2) At the m-th step of the algorithm (e.g. an iterative method), update the interior of
Uk
n in the interior using (3.1) and some scheme

3) Update boundary values in Uk
n (if Dirichlet, these values don’t need to change (‘extend’

to the boundary)

The benefit is that implementation can be greatly simplified. The disadvantages are that
(i) some efficiency is lost and (ii) the properties of this ‘expanded’ system may be slightly
different or unnatural (e.g. Neumann BCs), depending on the boundary conditions

For Neumann boundary conditions, we would need to create the ghost points outside the
domain and store those; then the trick still works but is less natural.

3.1 Short note on linear algebra

This matrix has O(N2) elements and a bandwidth of 2N . Because the bandwidth scales
with the size (unlike the tridiagonal matrix from 1d BVPs), the LU factorization method
loses some efficiency. Instead of remaining O(M) (where M = N2 is the number of matrix
entries), it takes O(M2) operations to solve. With some work, one can reduce this (called
‘re-ordering strategies’).

13

Instead, a simpler (and popular) approach is to use an iterative method that requires
only a map

x→ Ax

as an input, and does not care about the structure of A and outputs a sequence of
approximations v(1),v(2), · · · that converge to the solution. This means that only O(M) op-
erations are required per step (to do Ax calculations), so if the iteration converges rapidly,
the method is efficient.

The SOR method (Successive over-relaxation) can be used for Poisson’s equation, and is a
standard ‘simple’ choice; others include MINRES and GMRES. Some amount of work is
required to make these methods truly efficient by pre-processing the system to be easier to
solve (‘preconditioning’).

3.2 Relaxation (briefly)

An interesting approach is to observe that, in a region Ω,

0 = ∇2u, ...BCs on the boundary of Ω... (3.4)

is the steady state solution of the diffusion equation

∂u

∂t
= ∇2u (3.5)

with the same boundary conditions. It follows that we can solve the boundary value problem
(3.4) by instead solving the parabolic PDE (3.5) for a long enough time that the solution
nears convergence. Because the convergence rate is exponential (like e−λt where λ is the
smallest eigenvalue of ∇2u = λu with the given BCs), and we know that the heat equation
is well behaved numerically, the approach should be reasonable.

General principle: The approach here is called relaxation, because we are constructing
a process that allows some initial guess to ‘relax’ to the the desired solution. Relaxation can
be used in a variety of places in numerical methods - if you can’t solve a problem directly,
build a path to get there.

Let’s, for example, consider the one dimensional BVP

u′′ = f, u(0) = u(1) = 0.

We instead consider the heat equation

ut = uxx − f, u(0) = u(1) = 0.

Solving using the FTCS method for UK
n ≈ u(xn, tk) gives

Uk+1
n = Uk

n +
∆t

∆x2
(Uk

n+1 − 2Uk
n + Uk

n−1)− fn

14

with the appropriate boundary conditions. Since we do not care about the solution except
after a long time, we should take the largest timestep possible, so ∆t = ∆x2/2, which yields
the iteration

Uk+1
n = Uk

n +
1

2
(Uk

n+1 − 2Uk
n + Uk

n−1)− fn.

We can view this as an iteration for approximations U (0), U (1), · · · that converge to a solution
U∞ of the BVP. This, in fact, is the Jacobi iterative method applied to the BVP directly.

From here, we can use the ‘relaxation’ intuition to develop better methods. Essentially, we
are using numerical intuition from parabolic equations to design an iterative scheme for solv-
ing a boundary value problem. (For details: see the SOR (successive over-relaxation)
method).

It’s worth noting that in a sense, the parabolic problem (time-dependent) is easier to
solve than the steady-state one (the pure boundary value problem) - we are permitted to
start with an initial condition and run it forward in time.

3.3 Alternating direction (ADI) method

An appealing approach is to try to decompose the two-dimensional operator into simpler
one-dimensional parts by a splitting scheme (see ODE notes on splitting for a review), Let’s
see how this might work for the heat equation

ut = uxx + uyy, 0 ≤ x, y ≤ 1, u = 0 on the boundary

since the Laplacian uxx + uyy is a sum of an x-part and a y-part. As per usual, define a grid
xj = j∆x and yk = k∆y with ∆x = ∆y = 1/(N + 1). Note that

ut = uxx, 0 ≤ x, y ≤ 1

can be easily solved by solving the 1d problems

(u(x, yk))t = (u(x, yk))xx, 0 ≤ x ≤ 1, u(0, yk) = u(1, yk) = 0

for each index k (that is, we can update each horizontal ‘slice’ of the data separately).

To separate the directions, we use a trick similar to the operator factoring in operator
splitting. Let h = ∆x = ∆y and let

Un(x, y) ≈ u(x, y, tn).

The BTCS method is good for the heat equation, so it makes sense to discretize time using
a backward difference. Then

Un = Un−1 + ∆t(
∂2Un

∂x2
+
∂2Un

∂y2
)

15

which, in operator notation, yields

LUn = Un−1, L = I −∆t(
∂2

∂x2
+

∂2

∂y2
)

Now ‘factor’ L, observing that it looks like a product (1 +a)(1 + b) = 1 + (a+ b) + · · · to get

L = (I −∆t
∂2

∂x2
)(I −∆t

∂2

∂y2
) +O(∆t2).

Then at each step, we can solve

(I −∆t
∂2

∂x2
)V = Un−1

(I −∆t
∂2

∂y2
)Un = V.

The appropriate boundary conditions must also be imposed. This strategy is the alter-
nating direction implicit (ADI) method for linear equations. The various techniques we
have for improving accuracy in finite differences can be employed here, although there are
limitations to the success of the splitting approach.

4 Spectral methods (a first example)

Before getting into details, let’s see how the Fourier transform can be used to solve PDEs
numerically. To start, consider the (almost trivial) example

u′′ = f, x ∈ [0, 2π], u 2π-periodic.

Recall the discrete Fourier transform and its inverse defined as

f̂k =
1

N

N−1∑
j=0

fjω
jk, fj =

N−1∑
k=0

f̂kω
−jk, ω = e−2πi/N

Let us denote by Ûk the DFT of the data Un. From the difference equation

Un+1 − 2Un + Un−1 = ∆x2fn

plug in the expression

Un =
N−1∑
k=0

Ûkω
−nk

and the expression for fn to get

N−1∑
k=0

Ûk(ω
−k − 2 + ωk)ω−nk = ∆x2

N−1∑
k=0

f̂kω
−nk

16

which gives

Ûk =
∆x2f̂k

ω−k + ωk − 2
=

∆x2f̂k
2 cos(2πk/N)− 2

. (4.1)

Note that one can also view this calculation as transforming the difference equation using
the discrete shift rule

(Ûn+r)k = ω−rkÛk.

Thus, we may compute the approximate solution Un as follows:

1) Compute the DFT of f

2) Compute the DFT of the solution using (4.1)

3) Get the solution by inverse transforming (2)

The process extends directly to two-dimensions. Suppose we want to solve Laplace’s equation

uxx + uyy = f

using equally spaced points (with spacing ∆x = ∆y = ∆) in a square and Nx and Ny grid
points in each direction. Then

Umn =
Nx−1∑
k=0

Ny−1∑
`=0

Ûk`ω
−mk
x ω−n`y , ωx = e−2πi/Nx , ωy = e−2πi/Ny

where Umn ≈ u(xm, yn) (this is the 2d discrete Fourier transform). Note that the 2d transform
is just the 1d transform applied in succesion in each direction:

Ũkn =

Ny−1∑
`=0

Ûk`ω
−n`
y

Umn =
Nx−1∑
k=0

Ũkn ω
−mk
x

where Ũ is the IDFT in y. Plugging this into the centered difference formula for Laplace’s
equation, we get

Ûk`(ω
−k + ωk − 4 + ω−` + ω`) = ∆2f̂

so

Ûk` =
∆2f̂

2 cos(2πk/Nx) + 2 cos(2πm/Ny)− 4)
.

The process of solving is the same as before; compute Ûk` above, then inverse transform to
get the solution.

17

4.1 A brief reminder of spectral accuracy, DFT

(Fourier coefficient decay) Suppose f(x) has period 2π and a Fourier series

f =
∞∑

k=−∞

cke
ikx. (4.2)

Then the decay rate of |ck| depends on the smoothness of f :

• (slow) If f is only piecewise continuous, then |ck| ≤ C/|k|.

• If f has p continuous derivatives, there is a constant C such that

|ck| ≤
C

|k|p+2
.

• (fast) If f is smooth3 then |ck| ≤ Ce−a|k|.

We will refer to spectral accuracy as the property that the error in approximation decays
in this way. (For instance, by definition, the Fourier series partial sum SN =

∑N
k=−N cke

ikx ≈
f(x) has spectral accuracy).

Review of the DFT and interpolation: The discrete Fourier transform is not quite the
actual Fourier series. Let xn = nh with h = 2π/N , i.e. equally spaced points in [0, 2π] with
x0 = 0 and xN = 2π. Given data fn = f(xn) for a periodic function f , we have the inverse
transform

fn =
N−1∑
k=0

f̂ke
ikxn , n = 0, · · ·N − 1.

The right expression is a ‘complex’ trigonometric interpolant (with xn replaced by x).

For real functions, we should symmetrize, pairing +k frequencies with −k ones. Assum-
ing N is even, we get

f(x) ≈
N/2∑

k=−N/2+1

f̂ke
ikx (4.3)

which can then be written in real form as

f(x) ≈ a0

2
+
am
2

cosmx+
m∑
k=1

(ak cos kx+ bk sin kx)

where m = N/2. Where available, it’s most convenient to leave it in complex form, making
both theory and implementation much easier.

18

The interpolant is not quite the same as the Fourier series partial sum; recall that from
the DFT definition,

ck =
1

2π

∫ 2π

0

f(x)eikx dx ≈
N−1∑
n=0

fne
ikxn = fk

approximated using the trapezoidal rule. As it turns out, despite this error, methods that
make use of Fourier-like representations can recover spectral accuracy.

4.2 (Pseudo)-spectral methods: an example

While the method above is fast, it does not give us improved accuracy because it solves the
difference equation (which already has an O(∆x2) error). Ideally, we would like to transform
the derivative directly without approximating it.

Let’s contrast the methods by considering the following example:

u′′ − βu = f(x), u(0) = u(π) = 0 (D)

with a grid xn = nh for n = 0, · · ·N and h = π/N .

Method 1: Finite differences: We have solved the problem before; we obtain

Un+1 − (2 + βh2)Un + Un−1 = h2fn, n = 1, · · ·N − 1 (4.4)

and U0 = UN = 0. Note that β > 0 ensures that there is a unique solution since then the
matrix is diagonally dominant (2 + βh2 > 1 + 1).

Assuming, at least, that the solution u(x) is smooth enough, the error should scale like
O(1/N2) as N →∞ (second order), regardless of the properties of f .

Method 2 - Finite differences, with Fourier: Using the method from the previous
section, we take the discrete Fourier transform of the difference equation (4.4) to obtain
a simpler system (effectively diagonalizing it). However, the boundary conditions are not
correct!

The solution is to instead take the sine transform, which is valid for Dirichlet bound-
ary conditions (we saw the cosine version of this in a homework). Rather than derive it here,
we can use an equivalent trick. Let

F (x) =

{
f(x) 0 < x < π

−f(−x) −π < x < 0
, F (x) = F (x+ 2π)

i.e. the odd periodic extension of F with period 2π. Then we can solve

u′′ − βu = F (x), x ∈ [0, 2π], u 2π-periodic (P)

19

and restrict back to [0, π] to obtain the the solution to the Dirichlet problem (D). For a fair
comparison, we use h = π/N as before, so the points are now xn = nh for n = 0, · · · , K for
K = 2N .

Taking the transform of the difference equation (4.4) as before, we get

Ûk(ω
−k − 2− βh2 + ωk) = F̂k, k = 0, · · · , K − 1

where ω = e−2πi/K . This simplifies to

Ûk =
F̂k

2 cos 2πk/K − 2− βh2

which can then be inverse transformed to obtain un (and then restricted to [0, π]). Note that
β > 0 guarantees that the division is always well-defined.

This is a solution to the difference equation with spectral accuracy, which in turn has
an O(h2) error. Thus, the total error has a ‘spectral’ part from the DFT plus O(h2):

error = O(1/Np+2) +O(1/N2)

where p is the number of continuous derivatives of F (x) (the periodic extension). If contin-
uous, then the spectral error is at most the same magnitude as the FD error. But if f is
very smooth, there is no gain from the small spectral error (the FD error dominates).

Method 3 - The (pseudo)-spectral method: We can instead try to avoid a finite
difference approximation of the derivatives. Consider the same setup as above, solving (P).
Recall that from the discrete Fourier transform we can construct the interpolant

u(x) ≈
K/2∑

k=−K/2+1

Ûke
ikx. (4.5)

with the ‘mod K’ convention on the indices (so −1 ⇐⇒ K − 1 is the last index of the
transform vector, etc.). This is a starting point for a numerical method: we consider an
approximation of the form (4.5), plug into the DE and solve for Ûk.

Plugging this in, and doing the same expansion for F , we get∑
k∈S

Ûk((ik)2 − βh2)eikx =
∑
k∈S

F̂ke
ikx

where S = (−K/2 + 1, · · · , 0, · · · , K/2) is the vector of frequencies in the sum. By orthogo-
nality, the coefficients of each term should match, which gives

Ûk = − 1

k2 + βh2
F̂k, k ∈ S

Again, we have effectively diagonalized the derivative operator, but in a different way from
the finite difference/Fourier version.

This spectral method then uses the following steps to solve (P):

20

• Compute the DFT of F

• Plug the Fourier interpolant into the DE and solve for the coefficients

• Compute the transform of the solution Û

• Compute the IDFT of Û to get the solution U

The second step will provide a trivial system for a constant coefficient differential equation
with periodic boundary conditions, as the derivatives are then transformed exactly into ‘mul-
tiplication by ik’.

Important note: There is one subtletly in implementation to note. After the first step, we
have, with K total points,

DFT(F) = (F̂0, · · · , F̂K−1).

From the expression for the interpolant,

u(x) ≈
K/2∑

k=−K/2+1

Ûke
ikx.

correspond to the frequencies

~s = (0, 1, · · · , K/2, −K/2 + 1,−K/2 + 2, · · · ,−1).

Thus, the actual computation should be done as

Ûk =
1

~s2
k + βh2

F̂k, k = 0, · · ·K − 1

or, in vectorized form,

U = IDFT
[
q(~s) ∗DFT(F)

]
where ∗ denotes pointwise multiplication of the vectors and q(s) = 1/(s2 + βh2).

That is, it is important to be careful to align the frequencies correctly so they are
properly associated with the coefficients as in the interpolant (4.5).

4.3 Comparison

To summarize, suppose we solve the BVP using these three methods and the right hand side
f(x) in the ODE has p continuous derivatives.

1) Finite differences yield an approximation with an error O(1/N2), independent of p.
This can be improved to O(1/N2m) by using higher-order difference formulas. The
linear system is quick to solve (O(N)).

However, for a 2d problem like uxx + uyy − u = f , the linear system is much more
complicated, (still roughly O(N), but the ‘constant’ is larger).

21

2) Finite differences (Fourier) yield a solution similar to (1) (solving the same difference
equation). However, the error has a spectral part (O(1/Np+2)) plus the O(1/N2) error.

This is only a problem if f is piecewise continuous; then the error is O(1/N).

Note that for the 2d problem, we saw that the Fourier transform drastically simplifies
the system, so there is a significant gain in efficiency (compared to solving the linear
system by method (1)).

3) Spectral method: The solution has spectral accuracy; the error is O(1/Np+2) or even
exponential in N if f is smooth (a compelling reason to use it!). For smooth functions
f , this method can be far more accurate at smaller values of N than the other two.

4.4 Other boundary conditions

The catch here is that the Fourier spectral method requires periodic boundary conditions
(or equivalent). At least, for a constant coefficient, linear DE, the Fourier transform can
work.

• For Dirichlet boundary conditions, use the ‘sine transform’ (odd extension)

• For Neumann boundary conditions (e.g. u′(0) = u′(π) = 0), use the ‘cosine transform’

Note that there is no need to actually do the extension as shown in the examples here; one
can use a fast direct sine/cosine transform instead.

However, it should be clear that the use of the Fourier transform itself is powerful but
quite limited. By extending to other sets of orthogonal bases, we can arrive at pseudo-
spectral methods with the same nice properties that can handle more general problems.

As it turns out, the Chebyshev polynomials play an important role in extending spectral
methods to non-periodic problems.

22

5 Pseudo-spectral methods (briefly)

(Adapted from Numerical Recipes, Section 20.7). First, let us consider a connection between
interpolation and the approximation scheme. Suppose we have a function u(x) and want to
approximate it, obtaining values at a set of points x0, · · · xN in [0, b]. Moreover, suppose we
want to have the values agree at those points,

PN(xj) = u(xj), j = 0, · · ·N.

(This is called collocation in the context of BVPs).

The strategy is to approximate a function u(x) by the ‘pseudo-spectral’ representation

u(x) ≈ PN(x) =
N∑
k=0

akφk(x) (P)

where {φk} is an orthogonal basis in the interval [0, b] with weight function w(x):

〈φk, φm〉 =

∫ b

0

φkφmw(x) dx = 0. k 6= m.

Let us further suppose this is a polynomial basis, so φk has degree k. The function u also
has a ‘spectral’ expansion in terms of this basis,

u(x) =
∞∑
k=0

ckφk(x), ck =
〈φk, u〉
〈φk, φk〉

. (S)

Now recall Gaussian quadrature, where we let (x0, · · · , xN) be the roots of φN+1 and then
approximated integrals by ∫ b

0

g(x)w(x) dx ≈
N∑
k=0

vkg(xk)

where the vk’s were weights (formula not needed here). These Gaussian quadrature points
will be our grid points. The Gaussian quadrature formula provides a discrete inner product

〈φk, φm〉G :=
N∑
k=0

vkφk(x)φm(x)

i.e. it approximates the continuous inner product with the GQ formula.

As we saw with the Fourier transform, the ‘collocation’ and ‘spectral’ representation are
closely related. In fact, we claim that

ak =
〈u, φk〉G
〈φk, φk〉G

, k = 0, · · ·N.

23

Proof. Starting with the representation (S), take the discrete inner product with φk:

〈PN , φk〉G =
N∑
m=0

am〈φm, φk〉G.

But recall that Gaussian quadrature has a degree of exactness 2N + 1. Each of the cross
terms has the form

Gaussian quadrature applied to 0 =

∫ b

0

φk(x)φm(x) dx, m+ k ≤ 2N + 1

so it vanishes (the approximation to the integral is exact). It follows that

〈PN , φk〉G = aN〈φk, φk〉G.

Finally, since PN interpolates u at the grid points, and the LHS only involves its values at
those points,

〈u, φk〉G = 〈PN , φk〉G.

So what does this result give us? The prize here is spectral accuracy. Let us see how the
pseudo-spectral coefficients are related to the true spectral ones:

ak = 〈u, φk〉G =
N∑
m=0

cm〈φm, φk〉G +
∑
m>N

cm〈φm, φk〉G.

Using the orthogonality relation from before on the first term (all vanishes except the m = k
term, we get

ak = ck +
∑
m>N

〈φm, φk〉G · cm.

Thus the error between the pseudo- and true spectral coefficients looks like∑
m>N

(stuff) · cm

i.e. if the the true coefficients have nice decay properties, this error will also have those nice
properties.

This tells us that interpolation at Gaussian points can actually provide spectral accuracy,
due to this remarkable connection to the spectral representation.

24

5.1 For BVPs

Now suppose we need to solve a linear, constant coefficient BVP like

Lu := u′′ + u′ = f, u(0) = u(1) = 0.

The pseudospectral collocation method proceeds by taking the Gaussian points and
an orthogonal basis of polynomials {φk}. Typically, these are the Chebyshev polynomials,
which have nice computational properties (we saw this from noting that the Chebyshev series
is related to the cosine series by a transform x→ cos θ).

We then form the representation

u ≈ PN :=
N∑
k=0

akφk(x)

and require that the collocation equations hold,

N∑
k=0

ak(Lφk)(xj) = f(xj).

That is, ‘the ODE is satisfied by PN at each of the grid points’. The theory outlined above
ensures that we can achieve spectral accuracy by this method.

The rest of the details are a bit messy. Unlike the Fourier basis, Lφk will not be a mul-
tiple of φk (polynomials are not eigenfunctions of the derivative operator, unlike eikx!). One
then needs to figure out the derivative values in terms of the basis,4

φ′k(xj) =
N∑
m=0

αjmφk(xm)

and so on. The collection of quantities demands a differentiation matrix, i.e. a matrix D̂
such that φ

′
k(x0)

...
φ′k(xN)

 = D̂

φk(x0)
...

φk(xN)

In the Fourier case, D̂ was just a diagonal matrix. As it turns out, such matrices can be
computed analytically by way of some clever recurrences for Chebyshev polynomials.

4One can also do this in ‘physical space’, which is traditional when dealing with small values of N ; here
we write u =

∑
u(xj)`(x) - the Lagrange interpolant form - and then figure out `′(xj) directly.

25

	PDEs: an introduction
	The method of lines
	stability: the hard way
	Convergence
	Connection to ODEs

	Von Neumann stability analysis
	What about other equations?
	More on modified equations
	Leapfrog and more

	Elliptic problems
	Short note on linear algebra
	Relaxation (briefly)
	Alternating direction (ADI) method

	Spectral methods (a first example)
	A brief reminder of spectral accuracy, DFT
	(Pseudo)-spectral methods: an example
	Comparison
	Other boundary conditions

	Pseudo-spectral methods (briefly)
	For BVPs

