
Math 563 Lecture Notes
Polynomial interpolation: the fundamentals

Spring 2020

Overview

The point: Here we introduce polynomial interpolation - a critical tool used throughout
computational math for building approximations to functions. Some properties of the im-
portant error formula are considered.

Related reading: Quarteroni, Section 8.1.1 and 8.2. For a bit more on stability and
the Runge example, see 8.1.2 (the section with the ‘Lebesgue constant’).

1 Introduction (approximation)

1.1 Motivation

Let f(x) be a function on an interval [a, b]. The goal is to construct a function g(x) that
approximates f to within a given error. To do so, we must specify:

• The structure of the approximating functions

• The way of measuring error

These choices lead to different schemes, which are the basis of approximation theory.
Note that there are really two problems in practice, depending on what is known:

• Problem I: The function f(x) is given (like f(x) = ex), can be evaluated at any point
x and we seek a simple function g(x) (like g(x) = ax + b) that best approximates f .
The ‘simple’ part constrains the possible accuracy.

• Problem II: Values are given at a set of points: (x0, f0), · · · (xn, fn) with fj = f(xj)
but f(x) is not known. The amount and type of data constrains the possible accuracy
and what approximations may be constructed.

One reasonable measure of size is the ‘max norm’ (or ‘L∞ [ell-infinity]’ norm)

‖f‖∞ = max
x∈[a,b]

|f(x)|

1

where f(x) is a continuous function.1. This quantity measures the maximum magnitude of
f . Thus, ‖f − g‖∞ measures the maximum error between f and g. The discrete analogue,
of course, is just the same maximum (the ‘`∞ norm’):

f = (f0, f1, · · · , fn) =⇒ ‖f‖∞ = max
j
|fj|.

(Preview: Later, we will consider the L2 norm
∫ b

a
|f(x) − g(x)|2 dx, which is the ‘mean-

square’ error (that you may know from analysis or statistics).)

Approximation by polynomials is most straightforward. Denote

Pn = {polynomials of degree ≤ n}.

Larger degree means a more complicated approximation (with n+ 1 coefficients). A polyno-
mial has the obvious advantage that it is easy to compute and manipulate.

One may ask, first, whether it is possible to approximate any function by a polynomial
to any accuracy. A classical theorem from analysis assures us this is true:

Theorem (Weierstrass’ theorem): Let f(x) be a continuous function on the (closed)
interval [a, b]. Then there is a sequence of polynomials Pn(x) (of degree n) such that

lim
n→∞
‖Pn − f‖∞ = 0.

Informally: Every continuous function on a closed interval can be approximated arbritrarily
well by a polynomial.

However, Wierstrass’ theorem does not say how to construct such a polynomial! To do so,
constructive methods are needed.

1Technically, this is the ‘sup’ norm supx∈[a,b] |f(x)|, but if f is continuous then it achieves its maximum
and the sup can be replaced by the simpler max. The term is used here since in the discrete case, it represents
the maximum error.

2

Figure 1: Interpolating polynomial for data at three nodes (x0, x1, x2) and two possible
functions f(x). Given three points, p(x) may not be a good estimate of f (right) - the
interpolant cannot know what f does between the data points.

2 Polynomial interpolation (Lagrange)

One approach to approximation is called interpolation. Suppose we have the data

‘nodes’ x0, · · · , xn, values fj = f(xj), j = 0, 1, · · · , n. (1)

An interpolant for f(x) is a function p(x) such that

p(xj) = fj for j = 0, 1, · · · , n. (2)

That is, an interpolant agrees with f at the given nodes. Note that if only the values at n+1
points are given, we have no information about f(x) in between, so it could do anything -
this is just a limitation of the data (see Figure 1).

In the context where f(x) is known, we are ‘sampling’ f(x) to construct a simpler ap-
proximation; there is more freedom to choose the nodes optimally.

The interpolating polynomial pn(x) (or p(x) if n is implied) for the nodes/data (1) is
defined to be the polynomial of degree ≤ n that interpolates the data (i.e. satisfies (2)).

Lemma (uniqueness): For a given function f(x), there is a unique polynomial pn(x) ∈ Pn

(i.e. degree ≤ n) interpolating f(x) at the n+ 1 nodes x0, · · · , xn.

The proof is useful to know. The uniqueness follows from the fact that a polynomial of
degree n has exactly n (complex) zeros (so ≤ n real zeros):

Proof. Suppose there are two such polynomials p(x) and q(x). Let r(x) = p(x)− q(x). Then

r(x) has degree ≤ n, r(xj) = p(xj)− q(xj) = 0 for j = 0, · · ·n.

Thus r is a degree ≤ n polynomial with n+ 1 zeros. But a non-zero polynomial of degree n
has at most n real zeros (by the fundamental theorem of algebra). Thus, r(x) must be equal

3

to the zero function (so it is trivial), and so p(x) = q(x) for all x.

Equivalently, we can factor r(x):

r(x) = · · · (x− x0) · · · (x− xn).

But the n+1 factors of (x−xj) give a degree n+1 polynomial, which makes no sense unless
the · · · is zero, in which case r(x) = 0 trivially.

Construction (general idea): From here, we would like to write

f(x) ≈ pn(x) =
n∑

i=0

ciφi(x)

where the φk’s are some basis that spans Pn(x). One choice is 1, x, x2, · · · xn, in which case

pn(x) = c0 + c1x+ · · ·+ cnx
n

but then the equations pn(xj) = fj just yield a messy system of equations (see below). Two
more elegant approaches (often more useful in practice) are considered in more detail.

Uniqueness: To emphasize, because the interpolating polynomial is unique, any method
will end up constructing the same polynomial, just in a different form. The methods should
be evaluated, then, by their advantages/disadvantages in practice.

Caution (interpolation vs. approximation): Note that ‘interpolation’ is not exactly
the same as ‘approximation’ - it is a strategy that one hopes will approximate the function.
In the case of Problem II where data is given, interpolation is natural since it uses precisely
the data we are given.

For Problem I (where f is given), it is not obvious that interpolation is the right
way to obtain a small max-norm (or any other error). Compare, for instance, to a best-fit
line that does not have to pass through any points.

4

2.1 Simple basis

For contrast, we start by constructing the interpolant in the basis {1, x, x2, · · · , xn}.
The interpolating polynomial then has the form

p(x) =
n∑

i=0

cix
i.

Imposing the conditions p(xj) = fj, we obtain the system of equations

n∑
i=0

cix
i
j = fj, j = 0, · · ·n. (3)

This is a linear system for the unknowns. Let c = (c0, · · · , cn)T (a vector of dim. n+ 1) and
f = (f0, · · · , fn)T and define the Vandermonde matrix

V =

1 x0 x20 · · · xn0
1 x1 x21 · · · xn1
...

...
...

...
1 xn x2n · · · xnn

 .
Then the system (3) can be written in matrix form as

V c = f .

If n is small (say, n = 1 or n = 2) then this approach works find (when n = 1, the process
is just finding the line ax+ b between two points). For larger n, the problem is not so nice.
It would be convenient if V were simply a diagonal matrix...

2.2 Lagrange basis

A more clever choice of basis makes solving for the coefficients trivial. The Lagrange form
uses basis polynomials `i(x) such that

p(x) =
n∑

i=0

fi`i(x).

That is, the coefficients are just the function values. This formula works if and only if each
`i vanishes at all the nodes except the k-th:

`i(xj) = δij =

{
1 j = i

0 j 6= i
, for i = 0, · · · , n. (4)

where δij is the ‘Kronecker delta’ (defined in-line). But this just says that `i has zeros at all
the xj’s except xi. There are then n zeros and `i ∈ Pn, so the polynomial can be factored.
The condition `i(xi) = 1 yields the leading factor:

`i(x) = C

n∏
j=0,j 6=i

(x− xj) =⇒ `i(x) =
n∏

j=0, j 6=i

x− xj
xi − xj

. (5)

5

Theorem (Lagrange form of the interpolant): Let x0, · · · , xn be a set of n+ 1 distinct
nodes and let

`i(x) =
n∏

j=0, j 6=i

x− xj
xi − xj

.

be the i-th ‘Lagrange basis polynomial’. Then the interpolating polynomial for the data
(x0, f0), · · · (xn, fn) can be expressed as

p(x) =
n∑

i=0

fi`i(x). (LI)

(The proof is immediate from the construction).

2.3 Computing: Lagrange form

The construction is straightforward in Lagrange form, if a bit tedious. Note that the basis
functions are independent of f(x); they depend only on the choice of nodes {xj}. Thus, we
can compute the `i’s separately from f , which can save work if several different f ’s are to
be evaluated at the same nodes.

Two alternate forms are more typical for computation (see section 5 for the other). To
improve the Lagrange formula (LI), let

`(x) =
n∏

j=0

(x− xj).

Factor this out of the Lagrange formula to get

p(x) = `(x)
n∑

j=0

wj
fj

x− xj
(M-LI)

where the ‘weights’ wj are the leftover constants from the product:

wj =
n∏

k=0, k 6=j

1

xj − xk
.

This is called the modified Lagrange formula. The weights depend only on the nodes,
so they can be computed in advance. Then the interpolant (M-LI) can be evaluated at any
value of x painlessly. For further simplification into ‘barycentric form’, see homework.

6

2.4 Note on adding points

One disadvantage of the Lagrange form is that it is not easy to add more points to the
interpolant. Suppose pn(x) has been constructed for nodes x0, · · · xn. Then, we find that a
new points xn+1 must be added (say, to improve accuracy).

Now the basis functions and/or weights must be re-computed - the entire polynomial has
changed. Ideally, we would like to keep the old computation and just add a new term.
Fortunately, another approach makes this easier (see Newton form, section 5).

2.5 Examples

Example (linear case): We can use this form to construct a line through two points
(x0, y0) and (x1, y1). The Lagrange basis functions are

`0(x) =
x− x1
x0 − x1

, `1(x) =
x− x0
x1 − x0

so

p1(x) = y0
x− x1
x0 − x1

+ y1
x− x0
x1 − x0

.

Example (basis functions for n = 2) Consider the nodes x = 0, 1/2 and 1. The Lagrange
basis polynomials are

`0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 1/2)(x− 1)

1/2
= 2(x− 1

2
)(x− 1)

and

`1(x) = −4x(x− 1), `2(x) = 2x(x− 1

2
).

the basis polynomials are sketched below.

7

2.6 Comparison to Taylor’s theorem

Recall Taylor’s theorem (simplified slightly):

Theorem (Taylor series) Let f ∈ C(n+1)([a, b] (continuous n + 1-st derivative in [a, b]).
Then for each point x0 in the interval, f can be written as

f(x) = Pn(x) +R(x),

Tn(x) :=
n∑

j=0

f (j)(x0)

j!
(x− x0)j, R(x) :=

f (n+1)(ηx)

(n+ 1)!
(x− x0)n+1 (6)

for some value ηx inside [a, b] depending on x.

The function can be approximated by an n-th degree polynomial plus error using values

f(x0), f
′(x0), · · · f (n)(x0).

This theorem, of course, is a valid way to approximate f(x). Like the Lagrange interpolant,
n+ 1 pieces of information of used, but all are at one point.

Because the Taylor series uses only information at x0, it tends to do poorly away from
x0. Given data at several points, interpolants tend to do better - since it takes into account
information on the whole interval. An example is shown below for

f(x) = sin x, x ∈ [0, π].

The Taylor series for n = 3 is
T3(x) = x− x3/6.

The interpolating polynomial p3(x) is also shown with equally spaced points. Note that the
interpolant has the appropriate shape, while the Taylor polynomial drops off when it leaves
the neighborhood of x = 0.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

2.0

1.5

1.0

0.5

0.0

0.5

1.0

f(x
)

true
Taylor (n=3)
interp (n=3)

8

3 Error analysis

The error bound can be written in a similar form to that of Taylor’s theorem. The funda-
mental result is the following (extremely important!) formula for interpolation error:

Theorem (Lagrange error formula): Suppose f ∈ Cn+1([a, b]) with the n+ 1 nodes

x0 < x1 < · · · < xn

contained in [a, b]. Let pn(x) be the interpolating polynomial. Then for x ∈ [a, b],

f(x) = pn(x) + E(x)

where the error can be written (in the ‘Lagrange form’)

E(x) =
f (n+1)(ηx)

(n+ 1)!

n∏
j=0

(x− xj)

for some ηx (depending on x) in [a, b].

Comparison to Taylor: The only difference is that

(Taylor)
n∏

j=0

(x− x0) −→ (Lagrange)
n∏

j=0

(x− xj)

and the rest (assumptions, ηx, etc.) are the same. The difference in the error (as in the
previous page) comes from the behavior of the product factor.

The proof is similar to the proof of Taylor’s theorem and is not really important; see sub-
section 5.2 for the details.

3.1 Consequences

There are two key questions to answer: When is the error small? When can we find a good
bound on the error? To restate, the error in the interpolant is

E(x) =
f (n+1)(ηx)

(n+ 1)!

n∏
j=0

(x− xj),

Note that ηx is only known to be inside [a, b]; otherwise we have no control over it. Thus
any bound derived for the error cannot depend on ηx.

The error depends on two factors (and the 1/(n+ 1)!):

• The size of the n+ 1-th derivative. Due to the ηx, we can only bound this term by

M = max
x∈[a,b]

|f (n+1)(x)|. (7)

9

• The product

ωn(x) =
n∏

j=0

(x− xj) (8)

which is small if the nodes xj’s and x are close together, and large if they are far
apart or x is far from the nodes.

In particular, it is clear that ω(x) will cause trouble for extrapolation (when x is
outside the interval [x0, xn]).

• The factor 1/(n+ 1)!,, which goes to zero quickly as n→∞.

Which term wins? The factorial helps make the error small, while the other two may grow
with n (depending on f and the nodes). Thus, the size of the error depends on a competition
between these factors.

A bound on the error in an interval I can be obtained by bounding each part, so

max
x∈I
|pn(x)− f(x)| ≤ M

(n+ 1)!
max
x∈I
|ωn(x)|. (9)

This bound works for any interval I, so for instance the error between the first two points
(I = [x0, x1]) would require bounding ω only in that range.

3.2 General error bound: equally spaced points

To get a better sense of ωn(x), suppose we now have equally spaced nodes in [a, b]:

xi = a+ jh, h =
b− a
n

so x0 = a and xn = b. Let ωn be defined as in (8). We want to know what happens to the
error as the ‘grid spacing’ h goes to zero.

To do so, the product ωn mus be bounded. First note that the error is worst near the
endpoints (why is this claim plausible?).
Now suppose that x is between the first two nodes, i.e. x ∈ [x0, x1]. Then each node after
that is h further away, so

|x− xj| ≤ (j + 1)h for j = 0, · · ·n.

It follows (omitting the argument for the other sub-intervals) that

|ωn(x)| ≤
n∏

j=0

|x− xj| ≤ (n+ 1)!hn+1 for x ∈ [a, b].

From Stirling’s approximation,

n! ∼ e−nnn
√

2πn as n→∞,

10

the hn+1 factor is (barely) enough to win over the (n+ 1)!:

(n+ 1)!(
b− a
n

)n+1 ∼ Cn1/2(
b− a
e

)n as n→∞.

Thus ωn decays like e−n (times
√
n). From the bound

|E(x)| ≤

(
max
x∈[a,b]

|f (n+1)(x)|
)

(n+ 1)!
max |ωn(x)|

we see that if the derivative over (n + 1)! decays faster than ((b − a)/e)n grows, the error
will go to zero (exponentially!).2

Example: Consider f(x) = 1/x with x0 = 1 and xn = 2.
Then for x ∈ [0, 1] we have fn = (−1)nn!/xn+1 so

|fn+1(x)|
(n+ 1)!

≤
(

max
x∈[1,2]

|1/xn+1|
)

= 1.

since 1/x is decreasing on [1, 2]. The ωn term decays fast enough to cancel this out:

|En(x)| ≤ 1 ·max |ωn| ∼ Cn1/2e−n as n→∞,

so the error decreases like e−n. This cancellation is typical, but far from guaranteed. 3

3.3 Example: error bound

Here is a practical example of an error estimate. Suppose we have the function/nodes

f(x) = ex, x0 = 0, x1 = 1

and wish to approximate in [0, 1]. The interpolating polynomial (Lagrange form) is

p1 = 1 · (1− x) + e · x

and the error has the form

E(x) =
f ′′(ηx)

2!
x(x− 1)

for ηx ∈ [0, 1]. The best we can do for the f ′′ term is the bound

M = max
x∈[0,1]

|f ′′(x)| = max
x∈[0,1]

|ex| ≤ e.

For the other term,
max
x∈[0,1]

|x(x− 1)| ≤ 1/4

2The condition here is not and if an only if; proving the precise conditions takes more work.
3For those familiar with complex analysis - if f is analytic in a disk of radius R, then by Cauchy’s integral

formula, |f (n)(z)| ≤ C/Rn by integrating f/(z − x0)n+1 around the disk. Then the error bound looks like
((b− a)/R)n, suggesting that analytic functions, at least, behave nicely with interpolation.

11

by finding the maximum (which is at x = 1/2). Thus

|p1(x)− f(x)| ≤ e

8
≈ 0.34 for x in [0, 1]

which is not great, but with only two functions values, we should not expect better.

Adding more points: Now suppose that we now use 10 equally spaced points

xj = jh, for j = 0, · · · 9

where h = 1/9 is the spacing between points. Then the error is

E(x) =
f (10)(ξx)

10!

9∏
j=0

(x− xj).

Bounding |f (10)(ξx)| ≤ e is easy. The product is bounded as previously discussed, yielding

|E(x)| ≤ eh10 ≈ 7.8× 10−10.

12

4 What can go wrong: Runge’s example

In general, it is dangerous to increase the number of nodes to try to improve the interpolant.
To see how badly things can go, consider the function

f(x) =
1

1 + 25x2
, x ∈ [−1, 1]

and equally spaced nodes −1 = x0 < · · · < xn = 1.
Plots of the interpolants pn(x) for small and large n are shown below.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1
-6

-4

-2

0

2

4

6

The polynomial oscillates wildly near the endpoints, getting worse and worse as n increases.
In fact, the maximum error

max
x∈[−1,1]

|pn(x)− f(x)|

grows exponentially as n→∞ (black line in Figure 2 below).

The poor behavior is not really unexpected, given some thought. If the polynomial is in-
creasing through one node, it needs to turn sharply to get back to the next node, causing
rapid variation. Thus, once the polynomial ends up with a large derivative, it gets out of
control and there is not much hope.

Relation to the error formula: The competing factors are

f (n+1)(ξ)

(n+ 1)!
, ωn(x) =

n∏
j=0

(x− xj).

It can be checked that if n is large, f (n)/(n + 1)! grows quite rapidly with n, fast enough
that the good behavior of ωn+1/(n+ 1)! (exponential decay) is not enough to counteract it.

13

10 15 20 25 30 35

10 -2

10 0

10 2

10 4

Figure 2: Max. error of the interpolating polynomial for Runge’s example, with equally
spaced nodes (black) and Chebyshev nodes (red). One converges; the other does not.

A better choice of nodes: However, by choosing different points so that ωn is smaller,
we can optimize the size of ωn enough that the interpolant works; this is the basis of
Chebyschev interpolation. The nodes (for n points) are

xj = cos

(
2j + 1

2n
π

)
, j = 0, · · · , n− 1.

As shown in the plot below (n = 10 and n = 50), the error is now well-behaved!

-1 -0.5 0 0.5 1

0

0.5

1

1.5

-1 -0.5 0 0.5 1

0

0.5

1

1.5

Thus the problem is not inherent to high-degree interpolants; a smarter choice of points can
work. The interesting theory of this will be explored later.

Key point: The lesson here is that equally spaced interpolants of high degree can be
disastrous (and should be avoided if possible). However, with the right choice of points, high
degree interpolants can work.

14

5 Newton form

The idea here is to build up the polynomial inductively, adding one point at a time. Define

pk = interpolating polynomial through (x0, y0), · · · (xk, yk).

The k = 0 case is trivial, since p0 is just a constant function:

p0(x) = y0.

Now suppose pk−1 is known. We wish to add the point (xk, yk) and adjust pk−1 so that it
also passes through the new point, adding one to the degree. Write pk in the form

pk = pk−1 + ck(x− x0) · · · (x− xk−1).

for a constant ck. The added term does not ’spoil’ the previous work, since

pk(xi) = pk−1(xi) for 0 ≤ i < k.

Thus we need only choose ck so that pk(xk) = yk:

ck =
yk − pk−1(xk)

(xk − x0) · · · (xk − xk−1)
.

This inductively constructs pk in ‘Newton’ form

pn = c0 + c1(x− x0) + c2(x− x1)(x− x0) + · · ·+ ck(x− x0) · · · (x− xk−1)

or more succinctly (with
∏−1

i=0 · · · understood to be 1)

pn =
n∑

j=0

cj

j−1∏
i=0

(x− xi).

Notice that cj depends only on the points up to xj. Some nice properties:

• This form is efficient to evaluate by using ‘Horner’s method’. We factor out each (x− xj)
to put it in nested form, e.g. for n = 3:

pn = c0 + (x− x0)
(
c1 + (x− x1)

(
c2 + (x− x2)(c3)

))
and then evaluate from inside out, saving many multiplications of the product terms.

• By the construction, adding a new point to the interpolation is easy because the coefficients
already computed do not change. Given pn, adding a point xn+1 simply requires updating

pn+1(x)︸ ︷︷ ︸
new

= pn(x)︸ ︷︷ ︸
old

+ cn+1

n∏
j=0

(x− xj)

for one new coefficient cn+1.

• However, we still need to find a good way to compute the coefficients cj. It turns out there
is a rather nice method (fast and simple!) for doing so.

15

5.1 Divided differences

Here is the technique for computing the Newton coefficients. We define divided differences
inductively as follows (using square brackets to distinguish from regular function evaluation):

f [xi] = f(xi)

f [xi−1, xi] =
f [xi]− f [xi−1]

xi − xi−1

f [xi−2, xi−1, xi] =
f [xi−1, xi]− f [xi−2, xi−1]

xi − xi−2
and in general

f [xi−j, xi−j+1, · · · , xi−1, xi] =
f [xi−j+1, · · · , xi−1, xi]− f [xi−j, xi+1, · · · , xi−1]

xi − xi−j
(10)

for 0 ≤ i < j ≤ n. The square brackets indicate that the divided difference is a function of
the nodes between xi−j and xi and the f -data, so it keeps track of the dependence.

Some shorthand is useful. Define the ‘first differences’4

(Df)i =
f(xi)− f(xi−1)

xi − xi−1
, i ≥ 1,

and then the second differences

(D2f)i =
(Df)i − (Df)i−1

xi − xi−2
, i ≥ 2,

and in general the j-th differences

(Djf)i =
(Dj−1f)i − (Dj−1f)i−1

xi − xi−j
, i ≥ j, (11)

That is, each new set is obtained by taking successive differences (adjacent indices) and
dividing by differences in the x’s with indices separated by j.

This definition is just short for the divided difference from xi−j to xi:

(Djf)i = f [xi−j, · · · , xi].

It is not hard (but a little tedious) to show the following:

Theorem (Newton form of the interpolant): The polynomial interpolating f at the
n+ 1 nodes x0, · · · , xn in Newton form is given by

pn(x) = f(x0) +
n∑

j=1

f [x0, x1, · · ·xj]
j−1∏
i=0

(x− xi). (12)

Note that f [x0, x1, · · · , xj] = (Djf)j (the first element in the list of values of Djf)

4The operator D here is an example of a ‘backward difference’, usually denoted ∇. It is a discrete version
of the derivative, and the divided differences are analogous to repeated applications of the derivative.

16

Fortunately, a table makes the pattern clear. Example: Let

f(x) = x3 − 2x2 + 1, xi = 0, 1, 2, 3.

The divided differences are best arranged in a table, where each one depends on the values
to the left/upper-left in the previous column. Showing both types of notation, it looks like:

i xi f Df D2f D3f
0 0 f [x0]
1 1 f [x1] f [x0, x1]
2 2 f [x2] f [x1, x2] f [x0, x1, x2]
3 3 f [x3] f [x2, x3] f [x1, x2, x3] f [x0, x1, x2, x3].

The Newton coefficients are then the diagonal entries.

It’s easiest to think of Djf as a column vector (with index i = j, j + 1, · · · , n), and the
next column Dj+1f is obtained by taking successive differences of the previous column.
(Note that the correct x-values also have to be used; this is clear once you calculate a few).

For the example,
i xi f Df D2f D3f
0 0 1
1 1 0 −1
2 2 1 1 1
3 3 10 9 4 1

This gives

(Df)1 = f [x0, x1] = −1, (D2f)2 = f [x0, x1, x2] = 1, (D3f)3 = f [x0, x1, x2, x3] = 1

so the Newton form of the interpolating polynomial is

p3(x) = 1− x+ x(x− 1) + x(x− 1)(x− 2).

Note that p3 and f are the same function (why?).

Practical note: If we only need to compute the entries for the interpolant, the algorithm
can be improved to use only one column of space for the divided differences by overwriting
entries into the same column at each step. For the example it would look like

1
0
1
10

→

1
−1
1
9

→

1
−1
1
4

→

1
−1
1
1

 .
This amounts to running the formula (11) with (careful) overwriting.

17

5.2 Proof of Lagrange error formula

The strategy is to define an auxiliary function q that has zeros at the n + 1 interpolation
points and x, then use the mean value theorem repeatedly to conclude that q(n+1) has one
zero - this will be the ηx.

Theorem (Lagrange error formula): Suppose f ∈ Cn+1([a, b]) with the n+ 1 nodes

x0 < x1 < · · · < xn

contained in [a, b]. Let pn(x) be the interpolating polynomial. Then for x ∈ [a, b],

f(x) = pn(x) + E(x)

where the error can be written (in the ‘Lagrange form’)

E(x) =
f (n+1)(ηx)

(n+ 1)!

n∏
j=0

(x− xj)

for some ηx (depending on x) in [a, b].

Proof. Fix a value x in the interval [a, b] (not one of the xj’s) and define

q(y) = f(y)− pn(y) + (pn(x)− f(x))r(y) r(y) :=
n∏

j=0

y − xj
x− xj

.

Note that r has zeros at the xj’s and r(x) = 1, so it is easy to check that

q(xj) = 0 for j = 0, · · · , n and q(x) = 0.

Then by repeated application of the mean value theorem, we conclude that q′ has n+1 zeros
(one each between zeros of q) and so on to find a point ηx such that

q(n+1)(ηx) = 0.

Now note that since pn has degree n, its n+ 1-th derivative is zero, so

q(n+1)(y) = f (n+1)(y) + (pn(x)− f(x))r(n+1)(y).

But r(y) is a polynomial of degree n+ 1, so only its leading term contributes to the formula
above. This is easy to calculate:

r(y) =

(
n∏

j=0

1

x− xj

)
yn+1 + (deg. n) =⇒ r(n+1)(y) = (n+ 1)!

n∏
j=0

1

x− xj
.

Plugging in ηx and rearranging then gives the desired formula.

18

6 Hermite interpolation (briefly)

Suppose we are instead given nodes x0, x1, · · · , xn and data

fj = f(xj), f ′j = f ′(xj), j = 0, · · ·n.

With the function value and derivative specified, there are now 2n+ 2 pieces of data to use.
The Hermite interpolating polynomial is the unique polynomial of degree 2n + 1 that
agrees with f and f ′ at the given nodes. That is,

H(xj) = fj, H
′(xj) = f ′j, j = 0, · · ·n.

Lemma (uniqueness): The Hermite interpolating polynomial H2n+1 (exists and) is unique.
(Proof: similar to the Lagrange proof; see HW)

Warning: The ‘Hermite interpolating polynomial’ is different from the ‘Hermite polyno-
mial’, which is one of a set of orthogonal polynomials that we will study later (unrelated!).

The construction can be done in two ways. One way is to use an analogue of the Lagrange
basis, writing the polynomial as

H2n+1(x) =
n∑

i=0

fihi(x) +
n∑

i=0

f ′i ĥi(x)

where hj and ĥj are suitably defined (hi and h′i vanish at the xj’s except for hi(xi) = 1 etc.).

A much more elegant approach uses divided differences. The rule is:

• Let z0, z1, z2, · · · , z2n+1 be the sequence x0, x0, x1, x1, · · · xn, xn

• Compute ‘divided differences’ using the zj’s (and fj = f(zj) as before)

• Replace ‘divide by zero’ results with derivatives, e.g. since z0 = z1 = x0,

f [z0, z1] =
f(z1)− f(z0)

z1 − z0
→ f ′(x0)

This means the divided difference table looks the same, but every other entry in the Df
column of first differences is f ′ instead of f . The rest of it is calculated the usual way.

One then obtains (rather miraculously), the Newton form

H2n+1(x) =
2n+1∑
i=0

f [z0, · · · , zi]
i−1∏
j=0

(x− zj)

19

which will look like

f(x0) + f ′(x0)(x− x0) + c(x− x0)2 + d(x− x0)2(x− x1) + · · ·

For example, let us compute the cubic Hermite interpolant for the data

f(−1) = 2, f ′(−1) = -1 , f(1) = 0, f ′(1) = 3 .

The divided difference table is (with the derivatives in boxes and diagonal entries used for
p(x) in red as before)

i zi f [zi] f [zi, zi−1] · · · · · ·
0 −1 2

1 −1 2 -1
2 1 0 −1 0

3 1 0 3 2 1

so the Hermite interpolant is

p(x) = 2− (x+ 1) + 0 · (x+ 1)2 + 1 · (x+ 1)2(x− 1).

Remark (accuracy): Typically, derivative information greatly improves the quality of the
interpolant (the disadvantage: we need to know the derivative). It can be shown that if
p2n+1 is the Hermite interpolant for the Runge example with n + 1 equally spaced points
(from earlier), then p2n+1 does converge to f .

20

	Introduction (approximation)
	Motivation

	Polynomial interpolation (Lagrange)
	Simple basis
	Lagrange basis
	Computing: Lagrange form
	Note on adding points
	Examples
	Comparison to Taylor's theorem

	Error analysis
	Consequences
	General error bound: equally spaced points
	Example: error bound

	What can go wrong: Runge's example
	Newton form
	Divided differences
	Proof of Lagrange error formula

	Hermite interpolation (briefly)

