
Math 563 Lecture notes

Introduction: what is numerical analysis?

Spring 2020

The point: The goal here is to introduce the themes of the course and get a sense of computa-
tional analysis by way of example. A minimal introduction to computer arithmetic is also provided,
omitting most of the messy details that are distracting.

Related reading: For all the un-needed (but interesting) details on computer arithmetic, see
Section 2.5 of Quarteroni. Other examples here will be addressed in detail later in the course.

Preface

The field of numerical analysis, broadly speaking, is concerned with obtaining approximate so-
lutions to mathematical problems that can be implemented on a computer.1 The theory of approx-
imation can be surprisingly deep and elegant, given the messiness of the problems it seeks to solve.
Under the wide umbrella of the subject is both pure analysis and more practical computational
work. Some examples include:

• Theory (the analysis)

◦ Convergence (limits of sequences that approach the true solution)

◦ Finite-dimensional spaces for approximation

◦ Discrete analogues of continuous processes

• Applied (somewhere in between)

◦ Derivation of (practical) numerical methods

◦ Intuition for interpreting results, measuring error

◦ Adapting/generalizing methods to get desired properties

• Implementation (the numerical)

◦ Translating methods to actual code

◦ Efficient implementation

◦ Developing packages for computing (COMSOL, Matlab, R etc.)

In this course, we focus more on the first two aspects and address the last one in less depth.
Hopefully, you will be convinced by the end that an understanding of the underlying mathematics
is invaluable, even when one is concerned with practical results.

1The same was true centuries ago - in the 1700s, advances in astronomy demanded precise calculations, which
motivated numerical tools like Napier’s tables of logarithms. In that time, a ’computer’ was an actual person tasked
with doing the computations which is, thankfully, no longer the case

1

1 A quick note on error

1.1 Relative error

Suppose x̃ ≈ x is an approximation to x. There are two basic ‘measures’ of error in practice:

absolute error = |x̃− x|,

relative error =
|x̃− x|
|x|

.

Which error is appropriate depends on context - we’ll find throughout the course that both are
useful, and some judgment is required to pick the right one. Many heuristics and theorems make
statements about one or the other, and it is important to know the difference.

Scaling (in)variance: Note that in particular, since relative error is ‘relative’ to the base value,
it is independent of a trivial scaling; i.e. if x̃ and x are replaced by ax̃ and ax then the relative
error is the same, but the absolute error gets scaled by a.

Aside (Why not both at once?): A convenient trick is to use ‘combined’ measure

(unnamed) error =
|x̃− x|
1 + |x|

≈

{
abs. error if |x| � 1

rel. error if |x| � 1
.

This measure can occasionally be used to write a desired error tolerance in terms of a single quantity
instead of two separate conditions for the relative and absolute error.

1.2 Cancellation

There are operations that are dangerous when there is an associated error. This means that in de-
signing algorithms, we will need to keep in mind what formulas are ‘good’ or ’bad’ for computation,
even when they are equivalent in theory.

One notable culprit is the dramatically named catastrophic cancellation. Suppose, for ex-
ample, we are working with quantities known to three decimal digits and end up computing

1.234 · · · − 1.230 · · ·
1.001 · · · − 1.000 · · ·

=
0.04 · · ·
0.01 · · ·

= 4. · · · .

The ellipses indicate ‘insignificant’ digits (the values are only known to be accurate to the first
three). The result only has one digit of accuracy - a cause for concern. In general, we see that if
f is continuous then

x ≈ y =⇒ f(x)− f(y)

x− y
leads to loss of relative accuracy.

Unfortunately, such expressions are common - so one has to be careful. For example, consider the
seemingly innocent quadratic formula when a is small. Then

r =
−1 +

√
1− 4ac

2a
=
−1 + (≈ 1)

small

which leads to catastrophic cancellation.

2

However, a simple manipulation fixes this issue:

r =
−1 +

√
1− 4ac

2a

−1−
√

1− 4ac

−1−
√

1− 4ac
=

4ac

−1−
√

1− 4ac
.

The two formulas are theoretically equivalent, but computationally different!

The small correction rule: However, it is often true that a low-accuracy number is okay when
it is a ‘small correction’ to the last few digits. An expression like the

xn+1 = xn +
f(xn)− f(xn−1)

xn − xn−1
(1)

(the secant method for root finding) is not problematic. This iteration (ideally) converges to a zero
x∗ of a function f(x). Assuming that xn → x∗ and that we are close to the zero (so xn ≈ x∗), the
difference quotient in (1) has cancellation since xn, xn−1 ≈ x∗.

But this is not actually a problem because by this point in the iteration, only some digits of
xn need updating - which does not require full significant digits.

For instance, if xn → 1 and x9 = 1.00234 then it may look like

x10 = 1.00234 + (−0.00221)

x11 = 1.00013 + (−0.00010)

and so on, so even if the ‘updates’ have less accuracy (three and two for n = 10 and n = 11 here).
In short, ‘small corrections’ only need to be accurate to the number of digits they are updating.

2 Floating point arithmetic (briefly)

A computer must store a finite amount of data - and as such, all numbers and arithmetic are done
with some error. At times, this ‘finite precision’ issue is minor, and the theory can largely ignore
it (accepting there will be error in the practical answer). We will typically develop theory without
too much concern for rounding error unless it really matters.

It is important to be able to recognize rounding error and understand how it manifests (and have
some intuition for when it is important - e.g. the catastrophic cancellation example above).

Let us define the set of machine numbers to be the number system used by a typical com-
puter/language - that is, a ‘double precision’ number (a double in C/C++, and the default numeric
type in python/matlab).2 Such a number is stored in memory in the ‘floating point’ form

(base 2) ± 1.d1d2 · · · dN × 2e =

(
1 +

n∑
k=1

dk2
−k

)
2e, m ≤ e ≤M (2)

where the di’s are binary digits (zero or one) and N = 52 and m,M are limits for the exponent.3

2You could, of course, use a float (single precision) or even a ‘quad-precision’ number, but at this point, a double

is standard and there is rarely a need for anything else.
3For all the nasty details, consult the IEEE standard for double precision numbers, where this is defined.

3

Further, let us define the ‘rounding’ operation

fl(x) = ‘nearest’ machine number (2) to x ∈ R.

Because there are only N binary digits in the machine number, the numbers are a finite sequence.
Starting from 1, the first few values are

1, 1. 00 · · · 0︸ ︷︷ ︸
N−1 zeros

1 = 1 + 2−N , · · ·

The distance from 1 to the next largest number is important and has a special name:

machine epsilon = εm := 2−N (≈ 2.2× 10−16 for a double)

The ‘rounding error’ incurred by representing a real number x by a machine number fl(x) is
bounded above by half this distance, as the sketch below indicates.

Moreover (guaranteed by implementation on processors), εm/2 represents a bound on the relative
error in basic arithmetic on the computer. The value um = εm/2 is called the rounding unit.

Rule (rounding error): Let um = εm/2 be the rounding unit (≈ 1.1× 10−16 for a double).

(i) The (relative) ‘rounding error’ in representing a number is bounded by um:

fl(x) = x(1 + δ), |δ| ≤ um.

(ii) The error in arithmetic operations +,−,×, / have a similar bound, e.g. if x, y are machine
numbers then it holds that

fl(x+ y) = (x+ y)(1 + δ), |δ| ≤ um.

Short version: Rounding/arithmetic produce a ‘machine epsilon’ sized relative error.

The presence of these rounding errors means that numerical codes will invariably have some
error that accumulates as operations are done. For instance, consider computing the sum

y =

1000∑
n=1

(−1)n

2n+ 1
.

There are about 1000 additions (plus the reciprocals), so we expect at least a 1000× εm ≈ 10−13-
sized error (order of magnitude). The calculation

y =
sin(1)

10−5
+ cos(1)

4

would have an absolute error of about 10−11 (a relative error about um ≈ 10−16 if an accurate
method for sin is used). This gives you a rule of thumb that can indicate when a small discrepancy
is ‘just rounding error’ and not anything deeper. Most of the time, such an error can be accepted.

The more interesting part, as we will see, is making sure that these errors are not amplified by the
algorithm to the point of spoiling the solution.

2.1 Condition/sensitivity

Suppose we wish to solve a problem with an input x and output f(x). If the value of x is changed
by an amount δx of size |δx| ≤ ε, then the output f changes by an amount δf = f(x+ δx)− f(x).

Conditioning: A problem is called well-conditioned if small changes
in the input lead to small changes in the output (δx small implies δf
small, with ‘small’ in whatever sense is relevant).

If the problem is sensitive to small changes in δx - to the point of
computational difficulty - the problem is called ill-conditioned.

For each type of problem, there is a measure of condition - the condition number). Given δx of
this small size, we have that

relative sensitivity to δx = sup
|δx|≤ε

∣∣∣∣δf/fδx/x

∣∣∣∣ .
Taking the limit as ε→ 0 gives the desired measure of the system’s sensitivity:

(relative) condition number = lim
ε↘0

sup
|δx|≤ε

∣∣∣∣(f(x+ δx)− f(x))/f(x)

δx/x

∣∣∣∣ (3)

The problem is ill-conditioned if this number is large, since then a small error made in the input
can lead to a drastic difference in the output.

Key point (ill-conditioned problems): Unfortunately, the poor condition is inherent to the
problem, so a correct algorithm would likely inherit the same sensitivity. For this reason, ill-
conditioned problems are hard to solve numerically (and best avoided if possible!).

For example, consider the problem of evaluating

f(x) = tanx, x ≈ π/2.

Suppose, say, we take x1 = π/2− 0.001 and x2 = π/2− 0.002. Then

|x1 − x2| = 0.001, |f(x1)− f(x2)| = 500

so the small difference in the x-values leads to large differences in f .

In general, for evaluating a real function f(x), the limit in the condition number (3) reduces
to a derivative, resulting in

(rel.) cond. number =
xf ′(x)

f(x)

The absolute version of this is just f ′(x). A large f ′(x) causes trouble.

5

3 Numerical instability

The sensitivity of an algorithm may differ from the condition of the problem. An algorithm is said
to be (numerically) stable if small errors in the inputs and at each step lead to small errors in
the solution. Because of the presence of errors, too much amplification of errors by the algorithm
will render it useless! An algorithm that amplifies errors (too much) is called unstable.

Let’s look at a somewhat contrived example. Suppose a problem has the solution

an = 3−n

A method (not a good one!) that can be used to compute 3−n it is the recurrence

an+1 =
7

3
an −

2

3
an−1, a0 = 1, a1 = 1/3. (4)

This ‘algorithm’ generates an = 1/3n in theory. Suppose now there is an initial error:

ã0 = 1, ã1 = 1/3 + δ

where |δ| < um ≈ 1.1 · 10−16 (on the order of rounding error). Running the code leads to disaster
(??). Eventually, the computed solution begins to grow exponentially, even though the initial error
in writing a = 1/3 is on the order of 10−16.

0 10 20 30 40 50

10 -12

10 -8

10 -4

10 0

The exact solution4 to the recurrence for ãn is actually

an =

(
1− 3δ

5

)
3−n +

3δ

5
2n.

There is a ‘spurious’ term that grows (not part of the 3−n we want), and it spoils the sequence
since the initial δ-sized error (small) grows exponentially:

an ∼
3δ

5
2n as n→∞.

We say this recurrence is a numerically unstable method for computing 3−n, because errors
become amplified and render the algorithm impractical.5

4To solve, guess an = rn to find that r = 1/3 and r = 2 yield solutions; then an = c13−n + c22n and apply ICs.
5While this example is contrived on its own, we will see recurrences like this appear in solving ODEs!

6

4 A motivating example

Note: we’ll cover this in more rigorous detail later. A task of obvious importance is computing the
derivative of a function f(x) at a point x0. A basic approach is the forward difference

D(f, h) :=
f(x0 + h)− f(x0)

h
≈ f ′(x0).

Denote by E(h) the absolute error in the approximation:

E(h) = f ′(x0)−D(f, h).

Given a function f and point x0, some key questions are

• How does the accuracy of the approximation relate to h?

• Does the error go to zero as h→ 0 or is there a best possible accuracy?

4.1 Two flavors of error

The approximation can be derived by using a Taylor series. Expand f(x0 + h) around x0:

f(x0 + h) = f(x0) + hf ′(x0) +
h2

2
f ′′(x0) +O(h3)

where O(h3) denotes the h3 and higher terms in the series. Now solve for f ′(x0) to obtain

f ′(x0) =
f(x0 + h)− f(x0)

h
− h

2
f ′′(x0) +O(h2).

We conclude that

D(f, h) = f ′(x0) +
f ′′(x0)

2
h+ · · · .

The terms to the right of f ′ are the truncation error - the part of the formula that is dropped
to get the approximation. From the leading term of the error (the h-term) we see that

truncation error ∼ Ch as h→ 0.

If f were computed exactly, this would also be E(h). But the function f , in practice, is not
computed exactly (nor is the subtraction in the numerator) so our analysis must take into account
such errors. Let’s assume that f is simple and implemented to high accuracy on the computer.
Then for any evaluation f̃ of the function,

f̃ = f + δ, |δ| < um.

Then the computed value of D is really

D̃(f, h) = D(f, h) +
δ1 − δ0
h

which introduces a ‘rounding error’ (not part of the truncation error, only present in computation)

|‘rounding’ error| ≤ um + um

h
=

2um
h
.

7

In summary, the total error E(h) has two parts:

E(h) = truncation + ‘rounding’ error ≤ Ch+
2um
h
. (5)

The analysis can be continued, but let’s instead explore the question numerically, to see how nu-
merical evidence can deduce this result.

Numerical approach: To start, pick a reasonable function/point:

f(x) = e2x, x0 = 0.

Since f ′(x0) = 2 is known, we can compute the error in the computed D̃(f, h). A log-log plot (see
box below) reveals that the total error

E(h) = |f ′(x0)− D̃(f, h)|

has behavior like Chp, but there are two distinct cases, separated by h∗ ≈ 10−8:

• For ‘not-too-small’ values of h (when h � h∗), the slope is 1 so E(h) ≈ const. · h. The error
decreases with h, heading towards zero as h→ 0.

• However, when h is ‘too-small’ (h� h∗), the slope is instead −1 and E(h) ≈ const./h.

10 15 10 13 10 11 10 9 10 7 10 5 10 3 10 1

h
10 10

10 8

10 6

10 4

10 2

100

D(
f,h

)

error
fit (s=-0.93)
fit (s=1.02)

To avoid the disastrous (unreliable or error-prone) behavior, we must take h � 10−8. The
minimum error possible is around 10−8 also - it cannot be made arbitrarily small. However, when
h is above this threshold, the error scales like Ch (which is good to know).

Now this observation only holds for the chosen function, but it gives us some insight into the
general rule of thumb. We can then use this idea as a guide when developing the theory. Numerics
can often be used this way - to explore the answer to a question before knowing how to answer it
mathematically.

Important tool (convergence plots): To see the behavior of f(h) as h → 0, two types of
‘convergence plots’ can be used:

• If f(h) = Chp, then log f vs. log h should be linear (slope p)

8

• If f(h) = Ce−ah then log f vs. h should be linear (slope −a)
Use a loglog or semilogy plot to get the axes right (not a plot of log f !). A linear fit will
give you the value of the parameters (or pick two points if you are confident the data is really linear).

A good table of data can also be used (to be emphasized later!).

Theory, briefly: Plotting the functions

h

2
f ′′(x0),

2um
h
,

we see that the theoretical prediction (5) does indeed match the computed results.

The result for the rounding error is just a bound, which is reflected in the plot by the unpre-
dictable behavior (the jagged lines); however, it still follows the trend of the bound in the worst
case (scaling like 1/h) as shown below.

10 14 10 11 10 8 10 5 10 2

h
10 10

10 8

10 6

10 4

10 2

100

D(
f,h

)

error
2u/h
hf ′′(x0)/2

9

5 Algorithms

A numerical algorithm is a sequence of steps that takes an input and returns some output that
(approximately) solves some mathematical problem. There are three levels:

Mathematical description→ Algorithm (pseudocode)→ Implementation (code)

The code has complete computational detail (variables, memory, control structure etc.), and on the
other end, the method is described in abstract terms - the math is defined but not the code. We
will often work with this‘high-level’ description of the algorithm.

In between is pseudocode. At this level, the computational steps are well defined but the
implementation is not. Pseudocode is typically specific enough that any two users who implement
it should get code that does the same thing.6

Example (algorithms and pseudocode): A trivial algorithm to illustrate the point. The
Fibonacci numbers are defined by

F0 = F1 = 1, Fj = Fj−1 + Fj−2, j ≥ 2. (6)

This is the ’mathematical description’ - it tells us exactly how to generate the numbers. But it
does not specify how it should be done. There is not much to say here; however, one decision must
be made: to generate all the numbers or just the n-th. Algorithm 1 takes an integer N > 0 and
generates all the Fibonacci numbers up to FN (typeset using the algorithmcx package).

If we need only the N -th number, storing the array is inefficient. Instead, we overwrite in the
loop, storing only a few variables instead of a length N array (Algorithm 2).

Algorithm 1 Fibonacci numbers: Version 1

Input: N ≥ 2, array F of length N + 1
Output: F stores F0, · · ·FN
F [0]← 1 and F [1]← 1
for i = 2, · · ·n do

F [i]← F [i− 1] + F [i− 2]
end for

Algorithm 2 Fibonacci numbers: Version 2

Input: N ≥ 2
Output: the N -th Fibonacci number FN
y ← 1 and z ← 1 . Fi−2 and Fi−1
t← 0 . temp. variable
for i = 2, · · ·N − 1 do

t← z
z ← z + y
y ← t

end for
return y

6For instance, by design, Matlab code is already pseudocode-like. Use of Matlab libraries or Matlab-specific
vectorization would be implementation details.

10

5.1 Practical goals

The mathematical theory is motivated by a need to design good numerical methods. There is
no perfect algorithm for a given (non-trivial) problem, so each property has a cost - gaining one
typically means losing another.

Here are some of the main (overlapping) concerns. The meaning depends on context - differ-
ent problems demand different properties, and the needs of the user (how accurate or fast does it
need to be?) matter also.

• Efficiency and accuracy tradeoffs:

◦ Given a tolerance ε, can the algorithm find a solution to within ε?

◦ How much time and memory (space) is required to solve the problem at a given accuracy?

◦ How does the time/memory scale with problem complexity?

◦ Can the correctness of the solution be verified (reliable error bounds)?

• Robustness/scope

◦ What is the scope of the algorithm - what problems can it solve? How general is it?

◦ Can the algorithm adapt to deal with hard cases or does the user need to step in?

◦ Does the user need to see the inner workings is it a ‘black box’?

• Stability:

◦ Does the algorithm keep rounding and other errors under control?

◦ We’ll have much more to say about this later!

Example: Consider Newton’s method

xn+1 = xn −
f(x)

f ′(x)
, x0 = ?

which finds a zero x∗ of a function f(x) (the sequence xn, hopefully, converges to x∗).

On efficiency/accuracy, we want to know whether xn converges to x∗ as n → ∞ and describe
how fast the error |xn − x∗| goes to zero. Given a maximum allowed error ε, how many iterations
are needed to make the error less than ε? (answer: the error goes to zero ‘quadratically’; the
number of significant digits doubles at each step if the function is nice).

On scope, we want to know for which functions f(x) the algorithm works (answer: f ∈ C2 or
sometimes less, but f must be at least differentiable; only fast when x∗ is a simple zero)

On stability, we want to know if an initial error in x0 or errors in evaluating f are amplified
as the algorithm progresses. (answer: it works fine).

On robustness, we want to know if the algorithm may fail when given a not-good starting ‘guess’
x0. (answer: not very robust; hard to know how close x0 must be and diverges if too far from the
root; requires some human attention).

In short, Newton’s method is extremely accurate/efficient when x0 is chosen close to x∗ and
the function is smooth and the zero is simple. However, it is not very robust unless coupled with
a good scheme for choosing x0 (which is hard to design).

11

	A quick note on error
	Relative error
	Cancellation

	Floating point arithmetic (briefly)
	Condition/sensitivity

	Numerical instability
	A motivating example
	Two flavors of error

	Algorithms
	Practical goals

