
Math 563, Spring 2020
Last updated: 4/13/20

HOMEWORK 9 (DUE WED. APR. 22)

Reading (suggested): Chapter 9 of Leveque.

Code to turn in: Your code for Problem 1 (optional: also the Crank-Nicolson code).

Note: Consider the problems not marked [AC] as the essential problems, and the [AC]
problems as extensions, further examples and theoretical details.

1. Problems

Problem 1 (A typical non-linear BVP). Consider a steady state problem for the
porous medium equation given by

(h3h′)′ = f(h), x ∈ [0, 2], h(0) = h`, h(2) = hr

which describes the height of a puddle of liquid with an external force f(x).1

a) Write the ODE in the form (g(h))′′ = · · · . Then derive the Newton iteration required to
solve the BVP using centered differences (don’t convert to a first order system; while you
can solve this as a linear BVP for g(h), keep it as a system for h itself).

b) Implement your scheme. While it is possible to simplify, you should write the
boundary-affected parts outside the main loop. Obtain a solution when f(x) = x2, h` = 1
and hr = 2 with a maximum error of 10−6 and provide evidence that your method is
convergent with the appropriate order. [Thorough version: pretend you don’t know the
exact solution. Quick version: use the exact solution to find the error].

c) [AC] Let q = h3h′ and derive, in detail, the Newton iteration required to solve the BVP
using the midpoint scheme for the first order system involving (h, q).

Problem 2 (Stability, adapted from A&P 8.11) [AC]. Consider the linear boundary
value problem

−y′′ + ay′ = q(x), y(0) = c, y(1) = d

Two ‘nice’ properties that are desirable for numerical stability are:

• A is diagonally dominant: the absolute sum of the non-diagonal entries in each
row are at most the size of the diagonal entry (

∑n
j=1,j 6=i |aij| ≤ aii for each i)

• The sign pattern in each row is −,+,− (e.g. −1, 2,−1) with + on the diagonal (or
the opposite).

(This, for instance, ensures A is positive definite, and that LU decomposition can be done
stably without pivoting).

1The ‘porous medium equation’ is the PDE ut = (unux)x for an integer n, which is an important nonlinear
diffusion equation.
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a) Write the problem to be solved for the approximation as Au = b. Use centered
differences and a uniform grid with u0 = y(0) and uN+1 = y(1) and spacing h.

b) Show that the matrix in (a) is only has these properties if R = |a|h < 2 (this value is
called the ‘grid Reynolds number’).

c) Assuming a > 0, show that if the first order derivative is instead discretized using a
backward difference, then there is no restriction on R to have the nice properties (this is a
common place where upwind discretization is used.

Problem 3 (a typical heat equation problem). The Crank-Nicolson method is a
popular second-order method (in both time and space) for solving heat-like equations.

a) Consider the heat equation ut = auxx. Use the method of lines, with centered differences
in space and the implicit trapezoidal method in time to derive the Crank-Nicolson
method in the form

Uk+1
n − Uk

n

∆t
= · · ·

b) Derive an explicit expression for the truncation error (up to small higher-order terms)
involving only x derivatives in u.

c) Use Von Neumann analysis to determine the stability restriction.

d) Implement the method and use it to solve

ut = auxx, x ∈ [0, π]

with a = 1
4
, boundary conditions

∂u

∂x
(0, t) = − 1

t+ 1
,

∂u

∂x
(π, t) = 0

and initial condition
u(x, 0) = sinx.

in the time interval [0, 4]. Show (with a convergence plot) that the method is indeed second
order in ∆t and ∆x. To do so, consider the error

E(T ) = max
0≤n≤N

|UK
n − u(xn, T )|

where T = 4 is the final time with at least one of two approaches:

(i) Use a small ∆x and ∆t to get an approximate ‘exact’ solution, then plot E(T) etc.2

(ii) Estimate the convergence order p using the table of p’s (not requiring an exact solution)
as done before. (You may need to sample a point instead of using the max. error over x).

2You could compute the exact solution analytically, but pretend that is not possible here. The Aitken
extrapolation tricks aren’t really convenient here, so the crude approach is easier.
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Problem 4 (More on upwind). Consider the advection equation

ut + cux = 0

and the method using forward differences for time and backward differences in space.

a) Use Von Neumann analysis to show that there is a CFL condition on ∆t/∆x and that
the speed c must have a certain sign. (What should be done to modify the method if
c < 0? What if c = c(x) depends on x?).

b) Find the modified equation and show that you get the same stability restriction as in (a).
[AC] Compare this to the modified equation for Lax-Friedrichs: which has more diffusion?

c) [AC, a numerical example] Consider the problem

ut + (u2)x = 0, u(0, t) = 1

with the initial condition u(x, 0) = e−x
2
. Solve this numerically using the method in (a).

What happens to the solution, and why does this indicate some care must be taken in
solving such problems numerically?

Problem 5 (diffusing a grid) [AC]. Suppose we have a set of points {xj} in [0, L] with
0 = x0 < · · · < xN+1 = L and wish to ‘smooth them out’ so they are a bit more evenly
distributed (but still retain some of its original configuration). To be precise, we want:

• The x̃j’s are still close to the distribution of the xj’s (as much as possible) but

• The ratio of successive ∆x’s stays between factors 1/δ and δ; that is if
∆x̃j = x̃j+1 − x̃j then

1

δ
≤ ∆x̃j

∆x̃j−1
≤ δ.

a) Construct a grid of points in [0, 2] with two values of ∆x: a ‘high-resolution’ region
[0.9, 1.1] with a spacing of ∆x = 10−3 an a ‘low-resolution region’ everywhere else with
∆x = 10−2. What is the resulting value of N?

a) View x as a function χ(q) where the q’s are evenly distributed in [0, 1] (so qj = j/(N + 1)
for j = 0, · · · , N + 1 and xj = χ(qj)). Write a scheme for solving the heat equation

xt = xqq, q ∈ [0, 1], x(q = 0, t) = χ(q)

with the appropriate boundary conditions. This allows you to ‘diffuse’ the points by
running the heat equation. What would happen if you ran your solver for a long time?

b) Implement this scheme and use it to smooth out the given distribution to achieve the
desired spacing given a value of δ (pick e.g. δ = 4 as an example).

c) Could you ‘sharpen’ the distribution of points by running the solver in reverse?
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