Math 563, Spring 2020
Last updated: 2/8/20

HOMEWORK 4 (DUE WED. FEB. 12)

Reading: Some further reading is noted below:
e Review material from previous weeks (see Piazza post for the list)

e Suggested: Section 10.7 and Section 10.9 of Quarteroni. Note that 10.9.1 has the fix
(Lanczos smoothing) for the Gibbs’ phenomenon problem.

Code to turn in:

e None required; you can turn in the code for Q2 if completed.

1. PROBLEMS (SOME WITH, SOME WITHOUT CODE)

Q1 (Hermite polynomials). Starting with po(x) = 1, derive the next three (up to deg.
3) Hermite polynomials, orthogonal with respect to

(f.g) = / "t w)g()e de.

Then estimate the integral

I= / sin?(z)e™* dx = 0.34270348108793888 - - -

o0

using 3 points. How close is it to the exact solution? What about with five points?’

Q2 (discrete least squares). Let z; = jh with h = 27/N (for j =0,--- N — 1) be the
usual nodes for the DFT.

a) Verify the discrete orthogonality relation
(el k), =0 for j # k
where (f,g)a = ;70 f(2;)9(x;).
b) Suppose we know the values of f at the x;’s and seek an approximation

f(@) = pule) = Y cxe™

k=—m

where m < N/2 that minimizes the discrete least squares error
N-1
B(@) = Ipm(z;) = fil?
=0

Show directly that the ¢;’s that solve this problem are just the DFT coefficients.

You can look up the nodes/coefficients at https://dlmf.nist.gov/3.5. This site is a good resource for
looking up any properties of special functions you may need.
1

https://dlmf.nist.gov/3.5

2 HOMEWORK 4 (DUE WED. FEB. 12)

Q3 (Parseval. discrete version). Recall that Parseval’s identity says

27
| 1@k i =2y ol
0

keZ
if f € L*([0,2n]) has a Fourier series Y., , cxe’™ (proven by considering (f, f)).

Derive a discrete analogue of this identity for the DFT, relating Y |f;]* to Y, [Fy|?. Can
the DFT/IDFT be defined so that the two quantities are equal?

Q4 (discrete cosine transform).
Suppose now that f(z) is a function defined on [0, 7]. Derive the discrete cosine
transform (DCT) (possibly up to a factor of 1/N)

N-1

1 .
Fo=5(fo+ (—=DFfn) + Y ficos(mjk/N), k=0,--- ,N—1
j=1
by the following method:
e Extend f to [0,27] by ‘even extension’ with f(z) = f(27 —).
e Take the DFT of f using 2N points (z; = jh for j =0,--- ,2N —1).
e Simplify the DFT so that it only involves values in [0, 7].

Also derive a formula for the inverse transform by simplifying the IDFT in the same way.

Remark: The discrete cosine transform is used, for instance, in data compression by
cutting off high frequencies in the transform (here the fact that it is all real numbers is a
computational advantage). The JPEG compression algorithm uses this approach.

Q5 (Testing Fourier series). (AC) Implement the discrete Fourier transform using the
direct formula (not the FFT) (note: complex arithmetic is built into python and numpy!).

Check it by computing the real valued least-squares approximations for

f(x) =1/(2+ %) and plotting the max. error between f and the number of terms N.
Hint: compute the DF'T coefficients for a large number of points once; then you can
construct all the approximations from this one set of coefficients.

Bonus (no credit, but a good exercise): Check your calculations against the stock fft
algorithm provided by numpy (beware - check the documentation for the convention).

	1. Problems (some with, some without code)

