
Math 563, Spring 2020
Last updated: 2/8/20

HOMEWORK 4 (DUE WED. FEB. 12)

Reading: Some further reading is noted below:

• Review material from previous weeks (see Piazza post for the list)

• Suggested: Section 10.7 and Section 10.9 of Quarteroni. Note that 10.9.1 has the fix
(Lanczos smoothing) for the Gibbs’ phenomenon problem.

Code to turn in:

• None required; you can turn in the code for Q2 if completed.

1. Problems (some with, some without code)

Q1 (Hermite polynomials). Starting with p0(x) = 1, derive the next three (up to deg.
3) Hermite polynomials, orthogonal with respect to

〈f, g〉 =

∫ ∞
−∞

f(x)g(x)e−x
2

dx.

Then estimate the integral

I =

∫ ∞
−∞

sin4(x)e−x
2

dx = 0.34270348108793888 · · ·

using 3 points. How close is it to the exact solution? What about with five points?1

Q2 (discrete least squares). Let xj = jh with h = 2π/N (for j = 0, · · ·N − 1) be the
usual nodes for the DFT.

a) Verify the discrete orthogonality relation

〈eijx, eikx〉d = 0 for j 6= k

where 〈f, g〉d =
∑N−1

j=0 f(xj)g(xj).

b) Suppose we know the values of f at the xj’s and seek an approximation

f(x) ≈ pm(x) =
m∑

k=−m

cke
ikx

where m < N/2 that minimizes the discrete least squares error

E(~c) =
N−1∑
j=0

|pm(xj)− fj|2

Show directly that the ck’s that solve this problem are just the DFT coefficients.

1You can look up the nodes/coefficients at https://dlmf.nist.gov/3.5. This site is a good resource for
looking up any properties of special functions you may need.

1

https://dlmf.nist.gov/3.5

2 HOMEWORK 4 (DUE WED. FEB. 12)

Q3 (Parseval. discrete version). Recall that Parseval’s identity says∫ 2π

0

|f(x)|2 dx = 2π
∑
k∈Z

|ck|2

if f ∈ L2([0, 2π]) has a Fourier series
∑

k∈Z cke
ikx (proven by considering 〈f, f〉).

Derive a discrete analogue of this identity for the DFT, relating
∑
|fj|2 to

∑
k |Fk|2. Can

the DFT/IDFT be defined so that the two quantities are equal?

Q4 (discrete cosine transform).
Suppose now that f(x) is a function defined on [0, π]. Derive the discrete cosine
transform (DCT) (possibly up to a factor of 1/N)

Fk =
1

2
(f0 + (−1)kfN) +

N−1∑
j=1

fj cos(πjk/N), k = 0, · · · , N − 1

by the following method:

• Extend f to [0, 2π] by ‘even extension’ with f(x) = f(2π − x).

• Take the DFT of f using 2N points (xj = jh for j = 0, · · · , 2N − 1).

• Simplify the DFT so that it only involves values in [0, π].

Also derive a formula for the inverse transform by simplifying the IDFT in the same way.

Remark: The discrete cosine transform is used, for instance, in data compression by
cutting off high frequencies in the transform (here the fact that it is all real numbers is a
computational advantage). The JPEG compression algorithm uses this approach.

Q5 (Testing Fourier series). (AC) Implement the discrete Fourier transform using the
direct formula (not the FFT) (note: complex arithmetic is built into python and numpy!).

Check it by computing the real valued least-squares approximations for
f(x) = 1/(2 + esinx) and plotting the max. error between f and the number of terms N .
Hint: compute the DFT coefficients for a large number of points once; then you can
construct all the approximations from this one set of coefficients.

Bonus (no credit, but a good exercise): Check your calculations against the stock fft
algorithm provided by numpy (beware - check the documentation for the convention).

	1. Problems (some with, some without code)

