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HOMEWORK 1
MATH 563, SPRING 2020

DUE WEDNESDAY, JAN. 22

Note: You may end up using some of the interpolation code throughout the course,
whenever you have need of it. This homework skews towards computation, to become
accustomed to the messy process of implementation (the balance vs. theory may vary).

Reading: Read the following (book sections refer to Quarteroni unless otherwise noted).

• Section 8.2 and 8.2.1. Not all the divided diff. properties are essential, but they are
examples to better understand the definition.

Code to turn in:

• newt polyval from HW0, now with a working example that computes/evaluates
the interpolant (using the given divided diff. code).

• The code from C1 and a working example applying this to C3 (e.g. interpolate
1/(1 + x2) with equally spaced points).

• You can submit the code for C3 (optional) if you want feedback.

• The code used to generate the plot in (c) (you can do the actual plot, annotations
etc. manually; the point is to show the construction of the data).

1. Problems without code

Q0 (do not submit; quick reminder on coding perils). Identify the following:

- The number of elements in xi, xi+1, · · ·xj
- The numbers in range(n,0,-1) in python and n:-1:0 in matlab

- The length of 1:2:n in matlab

- The result of x.*y where x = [1; 2] and y = [2 3] (matlab)

- The result of x./y and x/y where x = [1 1] and y = [1 3] (matlab)

- The result of 1/3 in (i) matlab and (ii) python

- The result of 1/0 in (i) matlab and (ii) python

- Let x = [1, 2, 3]. What is y after y=x and x[1] = 1 in (i) matlab and (ii) python?

Q1. For data f0, f
′
0 and f1, f

′
1 at x0 and x1, respectively and h = x1 − x0, give a method for

computing the CHIP at a point x ∈ [x0, x1]. Write this in the form you would use in
writing code (done in a later problem) - you may want to break it up into short equations
with temporary variables. You can use either divided differences or the basis from HW 0.
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Q2 (Inverse interpolation). Let (x0, y0), (x1, y1), (x2, y2) be a given set of data from a
function y = f(x). Suppose we want to find a zero x∗ of f(x) (i.e. such that f(x∗) = 0) and
we know that exactly one exists.

a) Derive a formula for an interpolant of the inverse x = f−1(y) through the data.

b) Use (a) to estimate the value of the zero of f(x) = 1
2
x− 3−x in [0, 2] (use the points

x = 0, 1 and 2). Include a plot of the interpolant and the function. What does the
Lagrange error formula say about the maximum error? Is it close to the actual error?
Note: you don’t have to do the computation by hand.

c) One could also interpolate f(x) and estimate the root from there. What, in general, is
the advantage over using inverse interpolation on f−1(y) vs. interpolation on f(x)?

Remark: this process is useful for getting a quick estimate of the point where a function
crosses zero. An iterated version is used in a component of a popular root-finding
algorithm (Brent’s method).

Q3 (Quadratic splines?) (AC). Recall the natural cubic splines defined in class.

a) Consider instead using a ‘quadratic’ spline. Write down the form of this spline and try
to impose continuity conditions for f and derivatives. How many (continuous) derivatives
can it have? How many extra conditions need to be added?

b) Generalize to splines using polynomials of degree k.

2. Problems with code

C1 (Barycentric interpolation). The Lagrange form of the interpolant, while
computationally unpleasant, can be manipulated into a nice form by a clever trick.1

Let f(x), `i etc. be defined as per usual.

a) Let

`(x) =
n∏

i=0

(x− xi).

Show, by factoring out `(x) from the Lagrange form, that the interpolant can be written as

p(x) = `(x)
n∑

i=0

wi

x− xi
fi (1)

where the wi’s are numbers that can be ‘computed in advance’ (i.e. constants that depend
only on the given points {x}). Give a formula for wi as a product

∏
· · · .

1Reference: N. Higham, The numerical stability of barycentric Lagrange interpolation, IMA Journal of
Numerical Analysis (2004), 24, 547-556 or the Quarteroni, Chapter 8.
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b) The formula can be improved: use (1) with f(x) = 1 to ‘solve for’ `(x) in terms of the
weights and show that

p(x) =

n∑
i=0

wi

x− xi
fi

n∑
i=0

wi

x− xi
This is the barycentric form of the interpolant - which puts the interpolant in the form
of a weighted average (with weights fi).

c) [AC] It was noted by Trefethen, Higham and others that this form is actually a good
choice for evaluating the interpolating polynomial if the points are chosen correctly. Why is
there cause for concern in using this formula?

d) Write a routine bary weights(nodes) that returns an array of weights w given points
nodes = x0, · · · xn. Then write a routine bary polyval(nodes,w,f,xvals) that evaluates
the Lagrange interpolant p(x) in barycentric form at an array of points xvals.

Caution: consider the case where x is exactly one of the nodes!

C2 (Newton form). Use the provided divided difference code plus your code from HW 0
(which you may need to adapt) to write a routine newt polyval(nodes, coeffs, xvals) that
evaluates the interpolant in Newton form,

p(x) =
n−1∑
i=0

ci

i−1∏
j=0

(x− xj)

given the coefficients coeffs = (c0, · · · , cn−1). Check that it agrees with the alternate
method in C2.

Code given: divided differences for the Newton form coefficients.

C3 (numerical experiments). There is more to say about high-degree interpolation that
was hidden in the discussion from class.

a) To check the code: Use your barycentric (and/or Newton code) to test
f(x) = 1/(1 + ax2) in [−1, 1] with equally spaced nodes. Verify divergence when a = 25 but
convergence when a = 1 and show a log-plot of the error (but consider also (b)).

b) [AC] There’s an issue with the example in class - and possibly in (a) - that was omitted
from the plots. For simplicity, instead consider the simpler function f(x) = 1/(x+ 2) in
[−1, 1].

Test what happens for the Chebyshev nodes xi = cos(π(2i+ 1)/2n) (for
i = 0, · · · , n− 1). as n increases, using both methods of evaluating the interpolant. Show
what happens (with a plot). Is this an example where the truncation error in the Lagrange
interpolant blows up, or something else? Give a convincing argument for your answer.
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C4 (shapes via splines). Suppose you are given data points for a parameterized curve
(x(t), y(t)):

(xi, yi), i = 0, · · · , N − 1, xi = x(ti), yi = y(ti)

with ti’s in some range [0, T ].

a) Write a routine that takes in N (the number of points) and this data and constructs a
cubic spline approximation using CHIPs. The derivatives x′(t) and y′(t) should be
estimated using the differences

x(ti+1)− x(ti−1)

ti+1 − ti−1
and forward/backward differences at the endpoints (code is supplied!).

b) Write a routine that takes the coefficients found in (a) and evaluates the interpolant at a
set of points. Then use it on the data file provided (points.txt) to plot the interpolant.

Code given: A routine to read this data and the derivative estimation.

c) Show a plot of the result, including the interpolation points (as dots) and the spline
evaluated on a finer set of points (so the curve is smooth).

Remark: Splines are commonly used to represent complicated shapes on a computer (e.g.
in graphics or in simulations), as they are efficient to construct/evaluate.
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