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DUE MONDAY, JAN. 13

General Note: Some parts (on extensions, open-ended questions, tangents and more) are
worth ‘additional credit’ (AC). You are expected to do some of these parts (about a third)
throughout the course, as they often are an opportunity to engage with the material in
depth. However, skipping some will not negatively impact your grade.

On preparation: Note that you do not need to include the problem statements in your
solutions. Using LATEX is not required but suggested (plots/data are easier in TeX).

On testing code: Your code may be tested against data I create. Thus, the code should
work on generic inputs, not hard-coded to work for the given problems. The data, of
course, will be similar to what is given (numbers tweaked). Supplying a working example
with your code (or noting what doesn’t work) helps the testing process.

Reading: Read the following (book sections refer to Quarteroni unless otherwise noted).

• The Guidelines for Computational Work document on Piazza.

• Section 2.4 of Quarteroni (a more detailed version of the short intro from the
lecture notes; we’ll revisit the themes there throughout the course)

• Complete the office hours poll posted to Piazza

Code to turn in: newt polyval from C1. Submission to Sakai (details to follow).

Problems without code

S1 (Survey). Some questions for the start of the course...

a) Describe, briefly, which programming languages you know and in how much depth.
Have you written code for scientific computing?

b) Do you have prior experience with numerical methods (either in courses or in
practice)? Is there something you’ve seen that you’d like to understand better?

c) What do you hope to get out of the course? Are there applications - practical,
research or in courses - of particular interest?
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Q1 (Some interpolant properties). For all parts, let x0, · · ·xn be distinct nodes, let
fj = f(xj) and let `j(x) be the Lagrange basis polynomial.

a) Let `(x) = (x− x0)(x− x1) · · · (x− xn). What is the interpolating polynomial through
the points x0, · · ·xn−1 for `(x)?

b) Show that Lagrange interpolation is a linear operator. That is, if f1 and f2 are
functions, the Lagrange interpolant (for given nodes) of c1f1 + c2f2 is the same linear
combination of the interpolants for f1 and f2 (i.e. p = c1p1 + c2p2).

c) Show that
∑n

i=0 `i(x) = 1. Hint: use uniqueness.

d) (AC) Use part (c) to derive the relative error bound

‖pn(x)− f(x)‖∞ ≤ 2Mn‖f(x)‖∞, Mn = max
x

(
n∑

i=0

|`i(x)|

)
where ‖f‖∞ = maxx∈[a,b] |f(x)|. Hint: write f = f(x) · 1 and replace 1 with the sum in (c).

Q2 (A uniqueness proof).
a) Suppose f and f ′ are given at points x0, · · · , xn and let H(x) be the ‘Hermite
interpolating polynomial’ that agrees with f and f ′ at the nodes. What is its degree?
Explain (non-rigorously).1

b) Show that the Hermite interpolant from (i) is unique.
Hint: Write p(x) = (x− x0)(x− x1) · · · (x− xn)q(x) and show that p = p′ = 0 at
x0, x1, · · · , xn.

Q3 (Cubic Hermite interpolant). Suppose you are given the values of a function f(x)
and its derivative at x = 0 and x = 1. A polynomial interpolant matching these values can
be constructed, which is the cubic Hermite interpolating polynomial (CHIP).

a) Let p(x) and q(x) be the cubic polynomials such that

p(0) = p′(0) = 0, p(1) = 1, p′(1) = 0,

q(0) = q′(0) = 0, q(1) = 0, q′(1) = 1.

Find p and q by writing them as ax3 + bx2 + cx + d and solving directly.

b) Find the two other elements of the basis for CHIPs on [0, 1] (with non-zero p or p′ at
x = 0). Hint: consider p(1− x).

1Not to be confused with the ‘Hermite polynomial’, which is something else (we’ll get to that later!).
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1. Problems with code

We’ll have more code write in HW 1; this is just a warm-up of sorts, and a way to test the
submission process.

C1. Horner’s method for computing a polynomial

p(x) = a0 + a1x + · · ·+ anx
n

proceeds as follows. Write in ‘nested’ form, factoring out x’s as much as possible:

p(x) = a0 + x(a1 + x(a2 + · · ·x(an−1 + x(an)) · · · ).
For instance when n = 3,

p(x) = a0 + x(a1 + x(a2 + x(a3))).

Then the polynomial is evaluated from inside out. For the n = 3 case, it would be

y ← a3,

y ← a2 + xy,

...← ...

(The problem:) Suppose you are given the coefficients c0, · · · , cn in an array c for the
polynomial (which we’ll see is another form of the interpolant),

p(x) =
n∑

i=0

ci

n−1∏
j=0

(x− xj)

= c0 + c1(x− x0) + c2(x− x0)(x− x1) + · · ·+ cn(x− x0) · · · (x− xn−1).

Adapt Horner’s method to this case and write a routine newt polyval(nodes,c,xvals)

that evaluates p(x) given nodes x0, · · · , xn at a set of input values xvals (returning an
array pvals).

For example, newt polyval([1, 5],[3, 2],[1, e]) would evaluate p(x) = 3 + 2(x− 1)
and return [3, 3 + 2(e-1)]. Note that the value of the nodes are used up to xn−1.
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