Reading: Read and study the following:

- [suggested:] Chapter 9.2-9.3; 9.4.2 (not 9.4.3)
- Calculus review document (to be used for multi-d PDEs and also here for P2). We will make frequent use of some of the theorems and the spherical/cylindrical coordinates, and occasional use of the identities.

Problems:

- Chapter 9: 9.3.14c and 9.4.3 (Suggested [don’t turn in]: also 9.3.12a)
- Problems P1 to P5 below.
- Review spherical/cylindrical coordinates (no problems to do here, but you could re-derive some of the formulas on the review sheet, e.g. gradient in polar coordinates; all are useful exercises but some are more tedious than others).

PROBLEMS

P1 (some calculus for later use). a) Let \(u(x) \) and \(v(x) \) be (scalar) functions on \(\mathbb{R}^n \) and let \(\Omega \subset \mathbb{R}^n \) be a bounded region. Use integration by parts to derive Green’s formula

\[
\int_{\Omega} u \nabla^2 v - v \nabla^2 u \, dV = \int_{\partial \Omega} u \frac{\partial v}{\partial n} - v \frac{\partial u}{\partial n} \, dS
\]

where \(n \) is the outward normal to \(\Omega \) and \(\partial \Omega \) is the boundary. What is the result for \(n = 1 \)?

b) Consider the Neumann problem for Laplace’s equation in a rectangle \(\Omega = [0,1] \times [0,2] \),

\[
\nabla^2 u = f(x,y) \text{ in } \Omega
\]

\[
 u_y(x,0) = 0, \quad u_y(x,2) = g(x), \quad u_x(0,y) = h(y), \quad u_x(1,y) = 0.
\]

Integrate the PDE over the rectangle \(\Omega = [0,1] \times [0,2] \) and use (a) with \(v = 1 \) to derive a condition on \(f, g, h \) required for a solution to exist.

c) Let \(\hat{\rho} \) be the radial unit vector in spherical coordinates \((\rho, \theta, \phi)\) and consider the field

\[
v(\rho, \theta, \phi) = \frac{1}{\rho^2} \hat{\rho}.
\]

Let \(\Omega \) be a sphere of radius 1 and let \(\Omega_\epsilon \) be this sphere with an inner core of radius \(\epsilon \) removed:

\[
\Omega_\epsilon = \{(\rho, \theta, \phi) : \epsilon \leq \rho \leq 1\}.
\]

Show (by direct computation) that divergence theorem holds for \(\epsilon > 0 \). What about \(\epsilon = 0 \)?
P2. A metal beam is attached at $x = 0$ to a wall and free at $x = 1$, pulled down by a gravitational force $f(x)$. Its deflection $u(x)$ from horizontal satisfies

$$ku^{(4)}(x) = f(x), \quad u(0) = u'(0) = 0, \quad u''(1) = u'''(1) = 0$$

where $k > 0$ is a parameter.\(^1\) Let $k = 1$ for convenience.

a) Determine the form of the (piecewise) Green’s function $g(x, s)$ and write down the linear system to solve for the coefficients. \textit{Hint: by a good choice of basis you can simplify a bit.}

b) Solve the system in (a) to find the Green’s function. \textit{Hint: this may be messy, depending on (a); use computer algebra if necessary.}

P3 (separable FIE). Define the operator (on $L^2[0, 1]$)

$$Lu = \int_0^1 (x - t)^2 u(t) dt.$$

b) Derive the linear system to solve for the coefficients c_j of the eigenfunctions $\phi = \sum c_j \alpha_j$ and compute the non-zero eigenvalues (numerically is fine).

c) Find a condition on f that guarantees a solution exists for $Lu = f$.

P4. Consider a steady state problem for diffusion in a ring,

$$-u_{\theta\theta} - 4u = f(\theta), \quad u(\theta) \text{ } 2\pi \text{-periodic}, \quad \theta \in [0, 2\pi]$$

where $f(\theta)$ is a source. Use the Fredholm alternative to find the condition on f such that this problem has no solution vs. infinitely many. \textit{Hint: be careful; the problem is not regular.} Do not solve for u here!

P5 (Properties of the Dirac delta). Let $\delta(x)$ denote the Dirac delta in \mathbb{R}.

a) Make sense of the expression $x\delta(x)$ by computing $\int_a^b x\delta(x) f(x) dx$ with $\delta = H'(x)$.

b) Let $\langle f, g \rangle = \int_{-\infty}^{\infty} f(x) g(x) dx$. Show (using IBP and possibly a bit of hand-waving\(^2\)) that

$$\langle \delta'(x), f(x) \rangle = -\langle \delta(x), f'(x) \rangle = -f'(0)$$

for all functions f such that $f \to 0$ as $x \to \pm \infty$.

c) Let $\delta(x)$ be the Dirac delta in \mathbb{R}^n (see notes). Show that if $a \neq 0$ then the sifting property (and/or unit mass property) implies that

$$\delta(ax) = \frac{1}{|a|^n}\delta(x).$$

\textit{Hint: integrate over \mathbb{R}^n; assume the ‘change of variables’ rules apply for $\delta(x)$ in the integral.} In particular, note that $\delta(-x) = \delta(x)$.

\(^1\)This is the rigidity of the beam, $k = EI$ where E is Young’s modulus and I is the second moment.

\(^2\)This IBP approach is the way a derivative of a distribution is defined in general, although there are some technical conditions on f to deal with to be rigorous.