On code: No code is to be turned in. You should, however, write code for divided differences (or use the one in the book; copying is fine). Work does not need to be shown in computing interpolating polynomials.

I suggest doing a few steps by hand until you are confident with the algorithm, but this is up to you (since the calculations are tedious).

Book problems

• Chapter 10: 3, 9, 16, 19 (Note: ‘spectral’ accuracy means the error may start out poorly, but will eventually decay exponentially with n, i.e. $\sim r^{-n}$).
• Chapter 14: 1, 2. For (b) and (c), provide both a theoretical answer and numerical evidence to verify that it is true.
• Note for 10.4.9: The text may have some punctuation missing. You should compute two quadratic interpolants, one using 0, 7, 14 and the other using 7, 14, 21.

Other problems

P1. A function $f(x)$ has the following data:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>-1.9502</td>
</tr>
<tr>
<td>-0.5</td>
<td>-0.7769</td>
</tr>
<tr>
<td>0.3</td>
<td>3.0596</td>
</tr>
<tr>
<td>0.7</td>
<td>9.5662</td>
</tr>
<tr>
<td>1</td>
<td>22.0855</td>
</tr>
</tbody>
</table>

It is known that f has a single zero x^* in $[-1, 1]$.

a) Using three x_i's as nodes and a quadratic interpolant, estimate x^*.

b) Find the interpolant for all of the data (y_i, x_i), using the y_i’s as the nodes, and use it to estimate the value of x^* (this is called inverse interpolation). Hint: Compute $p(0)$.

c) Assuming that all the derivatives of f are known to be bounded in size by 10, give a reasonable estimate for a bound on the error in (a) and (b).

d) Under what conditions does inverse interpolation work?
P2. Let \(L_i(x) \) be the \(i \)-th Lagrange basis polynomial for \(n + 1 \) nodes \(x_0, x_1, \ldots, x_n \). For any function \(f(x) \), consider the approximation

\[
q(x) = \sum_{i=0}^{n} f(x_i)(L_i(x))^2.
\]

a) What is the degree of \(q(x) \)?

b) Show that \(q \) has the property that if the function \(f(x) \) is positive for all \(x \), then \(q(x) \) is also positive for all \(x \). \(^1\)

b) Show by way of a simple example that the usual interpolating polynomial does not have this property.

\(^1\)This is called ‘positivity’, which is sometimes desirable for an approximation scheme when the sign is important (such as when negative values of \(f(x) \) are not allowed).