Notes: There is no code to submit for this homework; you can use your code from the previous homework to do P6 (which requires some computation).

Problems

P1. Prove the following assertions:
 a) If \(f(x) \sim g(x) \) as \(x \to 0 \) then \(f = g + o(g) \).
 b) If \(a_n = O(1/n^p) \) as \(n \to \infty \) then \(a_n \) is also \(O(1/n^q) \) for all \(q < p \).
 c) Let \(f(x) = x \ln x \). Then \(f = O(x^p) \) for all \(p > 1 \) as \(x \to \infty \) but \(f \neq O(x) \).
 d) Let \(P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0 \). Then \(P = O(x^n) \) as \(x \to \infty \).

P2 (computing square roots). Suppose you are tasked with designing an algorithm to compute \(\sqrt{a} \) where \(a > 0 \) is a real number.

a) Show that Newton’s method applied to \(f(x) = x^2 - a \) will converge to \(\sqrt{a} \) if \(x_0 > 0 \).

b) Let \(e_k = x_k - \sqrt{a} \) be the error. Show, by directly manipulating the formula (not using any Taylor series approximations), that
\[
\frac{|e_{k+1}|}{\sqrt{a}} \leq \frac{1}{2} \left(\frac{|e_k|}{\sqrt{a}} \right)^2 \text{ if } x_k > \sqrt{a}.
\]
How many iterations are required to achieve a relative error of machine precision (\(\approx 2 \times 10^{-16} \)) if \(x_0 \) is chosen so that \(x_0 > \sqrt{a} \) and the initial error \(e_0 \) satisfies \(|e_0|/\sqrt{a} \leq 3/2 \)?

c) The algorithm can be improved by scaling so that the calculation is always done within a fixed interval. Let \(k \) be an integer such that
\[
b = 4^{-k}a \text{ satisfies } 1/4 \leq b \leq 1.
\]
We then use the method in part (a), but used to compute \(\sqrt{b} \). How many iterations are required to achieve machine precision in computing \(\sqrt{b} \)? Is any (relative) accuracy lost in going from \(\sqrt{b} \) to \(\sqrt{a} \) (the final result)?
P3. Suppose \(x^* \) is a root of \(f \) with multiplicity \(m > 1 \) and consider the iteration
\[
x_{k+1} = x_k - m \frac{f(x_k)}{f'(x_k)}.
\]
Assume that \(x_k \) converges to \(x^* \) and that \(f^{(m+1)}(x) \) is bounded. Show that \(e_{k+1} = O(|e_k|^2) \).

P4. Let \(f \) be a function with \(f'' > 0 \) and let \(x^* \) be a point such that \(f(x^*) = 0 \) with \(f'(x^*) < 0 \). The secant method is applied with starting values \(x_0 \) and \(x_1 \).

a) Show that if \(x_0, x_1 < x^* \) then \(x_2 < x^* \). Find analogous results for \(x_0, x_1 > x^* \) and when \(x_0, x_1 \) are on opposite sides of \(x^* \). You do not need to be rigorous if the claim is obvious from a sketch.

b) If \(x_1 < x^* < x_0 \), on which side of \(x^* \) is each element of the sequence \(x_k \)?

P5. Suppose a method is used to estimate a solution \(x^* \) to \(f(x^*) = 0 \) by generating a sequence of approximations \(\{x_k\} \) that converges to \(x^* \).

a) Suppose \(x^* = 0 \) and the result is that \(x_n = (0.99)^n \). How many iterations are required to have an error of less than \(10^{-6} \)? If the iteration is stopped when \(|x_{n+1} - x_n| < 10^{-6} \), what is the absolute error?

b) In general, when is it true that \(|x_{n+1} - x_n| \) is a good estimate of the (absolute) error?

c) If the method is used to find the zero (at \(x^* = 1 \)) of \(f(x) = (x - 1)^{10} \) and stops when \(|f(x_n)| < \epsilon \), what is the error? In general, when is it true that the residual \(|f(x)| \) is a good estimate of the error? *Hint: Taylor expand \(f \) near \(x^* \).*

Note: For (b) and (c), you only need to discuss briefly, rather than an exhaustive solution.

P6 (computation). In calculating the modes of vibration of an oscillating object like a string, one may encounter an equation like
\[
\frac{1}{2} \lambda = \tan \lambda.
\]
The positive solutions \(0 < \lambda_1 < \lambda_2 < \cdots \) are the fundamental frequencies.

Find the first five values of \(\lambda_k \) to six significant digits using the method of your choice. Briefly describe how you obtained the solutions. (*you don’t have to submit code; it just needs to be clear in your answer how the values were computed.*).