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Topics covered

• The heat equation
◦ Definitions: initial boundary value problems, linearity
◦ Types of boundary conditions, linearity and superposition

• Eigenfunctions
◦ Eigenfunctions and eigenvalue problems; computation
◦ Standard examples: Dirichlet and Neumann
◦ Structure of the eigenfunctions/eigenvalues

• More properties of eigenfunctions
◦ Oscillation (why is this required)
◦ Why is the set of eigenvalues discrete?
◦ Proof of orthogonality
◦ Rayleigh quotient (show λ ≥ 0)

1. The heat equation: preliminaries

Let [a, b] be a bounded interval. Here we consider the PDE

ut = uxx, x ∈ (a, b), t > 0. (1.1)

for u(x, t). This is the heat equation in the interval [a, b].

Remark (adding a coefficient): More generally, we could consider

ut = kuxx

where k > 0 is a ’diffusion coefficient’. However, since the constant can be scaled out by
defining a rescaled time τ = t/k to get

uτ = uxx

there is no loss of generality in studying the structure of (1.1). Note that it is essential
that the coefficient is positive; a negative k will produce drastically different results.

1.1. Initial and boundary conditions. An initial boundary value problem (IBVP)
for the heat equation consists of the PDE itself plus three other conditions specified at
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x = a, x = b and t = 0. As a simple example:

∂u

∂t
=
∂2u

∂x2
t > 0 and x ∈ (a, b), (1.2a)

u(a, t) = 0 and u(b, t) = 0 for t > 0 (1.2b)

u(x, 0) = f(x). (1.2c)

There are three components:

The PDE: Equation (1.2a) is the PDE (sometimes just ’the equation’), which thThe be
solution must satisfy in the entire domain (x ∈ (a, b) and t > 0 here).

Boundary conditions (BCs): Equations (1.2b) are the boundary conditions, imposed
at the x-boundaries of the interval. Each BC is some condition on u at the boundary.

Initial conditions (ICs): Equation (1.2c) is the initial condition, which specifies the
initial values of u (at the initial time t = 0).

The initial boundary value problem (1.2a)-(1.2c) has a unique solution provided some tech-
nical conditions hold on the boundary conditions.

One can think of the ‘boundary’ of the solution domain to have three sides: {x = a}, {x = b}
and {t = 0}, with the last side left open (the solution fills this in as t → ∞). The initial
condition is really a boundary condition at t = 0.1

Definition (important BCs): There are three basic types of boundary conditions. Most
of the time, we will consider one of these when solving PDEs.

Dirichlet: u(a, t) = 0 (or ’zero boundary conditions’)

Neumann: ux(a, t) = 0 (or ’zero flux’)

Robin: αux(a, t) + βu(a, t) = 0 (or ’radiation’)

1The three-sided boundary is called the parabolic boundary of the IBVP.
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The heat equation could have different types of boundary conditions at a and b, e.g.

ut = αuxx, x ∈ [0, 1], t > 0

u(0, t) = 0, ux(1, t) = 0

has a Dirichlet BC at x = 0 and Neumann BC at x = 1.

Modeling context: For the heat equation ut = αuxx, these have physical meaning. Recall
that u is the temperature and −αux is the heat flux.

Dirichlet: The temperature u is fixed at the end.

Neumann: The end is insulated (no heat enters or escapes).

Radiation: Some heat enters or escapes, with an amount proportional to the temperature:

−αux = βu.

For the interval [a, b] whether heat enters or escapes the system depends on the endpoint
and β. The heat flux −αux is to the right if it is positive, so at the left boundary a, heat
enters the system when β > 0 and leaves when β < 0.

Similarly, at the right boundary b, heat enters the system when β < 0 and leaves
when β > 0.

The same interpretations apply when the equation is describing diffusion of some other
quantity (e.g. diffusion of a chemical in a tube).

1.2. Linearity and homogeneous PDEs. The definitions of linear and homogeneous ex-
tend to PDEs. We call a PDE for u(x, t) linear if it can be written in the form

L[u] = f(x, t)

where f is some function and L is a linear operator involving the partial derivatives of u.
Recall that linear means that

L[c1u1 + c2u2] = c1L[u1] + c2L[u2].

The PDE is homogeneous if f = 0 (so l[u] = 0) and inhomogeneous if f is non-zero.

Some examples of linear PDEs we will study are

ut = uxx + g(x, t) (L[u] = ut − uxx),

utt = uxx + g(x, t) (L[u] = utt − uxx),
uxx + uyy = g(x, y) (L[u] = uxx + uyy = ∇2u),

which are the heat equation, wave equation and the Poisson equation, respectively. Note
that the function is u(x, y) in the last one. An example of a non-linear PDE would be

ut + uux = uxx

The same definitions apply to boundary conditions. All the boundary conditions listed
in the previous section are linear homogeneous. For example,

ux(a, t) = 0 (1.3)
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is a linear boundary condition since if u and v satisfy (1.3) and

w = c1u+ c2v

then w also satisfies (1.3) since

wx(a, t) = c1ux(a, t) + c2vx(a, t) = 0.

Non-homogeneous boundary conditions can be imposed, for instance

u(a, t) = t

which might be used to model the ambient temperature increasing with time.

Key fact: A linear, homogeneous PDE obeys the superposition principle:

u1, u2 are solutions =⇒ c1u1 + c2u2 is a solution (1.4)

for all scalars c1, c2 ∈ R. The same definition applies to boundary conditions. For instance,
all the boundary conditions listed above are linear homogeneous.

Note that an inhomogeneous PDE does not have this property! However, the ’homoge-
neous’ part (i.e. the equation with the inhomogeneous term set to zero) does, and we will
find that, as with ODEs, superposition will still be useful.

1.3. More on superposition. The superposition principle (1.4) is a crucial feature of linear
homogeneous problems. Note that while this property is true for homogeneous PDEs and
boundary conditions, it is not quite true when initial conditions are included. If u and v are
both solutions to the homogeneous problem

ut = uxx, t > 0 and x ∈ (a, b),

u(a, t) =u(b, t) = 0 for t > 0

where u has initial condition

u(x, 0) = f1(x)

and v has initial condition

v(x, 0) = f2(x)

then w = u+ v solves the IBVP

wt = wxx, t > 0 and x ∈ (a, b),

w(a, t) =w(b, t) = 0 for t > 0

w(x, 0) = f1(x) + f2(x).

Superimposing two solutions to the PDE with BCs will give another solution, and the initial
conditions get superimposed.

We can exploit superposition to split a problem into simpler parts. For example, suppose
we seek u solving the inhomogeneous problem

ut = uxx + h(x, t),

u(0, t) =u(1, t) = 0,

u(x, 0) = f(x)
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with non-zero initial conditions. We can split this into

u = v + w

where v solves an inhomogeneous problem with zero initial conditions and w(x, t) solves a
homogeneous problem with non-zero initial conditions,

vt = vxx + h(x, t),

v(0, t) =v(1, t) = 0,

v(x, 0) = 0

wt = wxx,

w(0, t) =w(1, t) = 0,

w(x, 0) = f(x),

thereby splitting the problem for u into two simpler parts.

To check this, plug v + w into the PDE, boundary conditions and initial conditions and
use linearity. For the PDE, we check that

ut = (v + w)t = vt + wt = vxx + wxx + h(x, t) = uxx + h(x, t).

For the boundary at x = 0, we have

u(0, t) = v(0, t) + w(0, t) = 0

and similarly u(1, t) = 0. Finally, for the initial condition,

u(x, 0) = v(x, 0) + w(x, 0) = 0 + f(x) = f(x).

2. Eigenfunctions

Return to the heat equation in a bounded domain with Dirichlet boundary conditions:

ut = uxx, x ∈ (a, b), t > 0 (2.1)

u(a, t) = u(b, t) = 0, t > 0. (2.2)

Now write the PDE in the form
ut = −L[u], (2.3)

where L is the linear operator
L[u] = −uxx

or, in operator notation,

L = − ∂2

∂x2
.

Now let us regard L as an operator acting on functions φ(x) (just functions of x), i.e.

L[φ] = φ′′ or L = − d2

dx2
.

Definition (eigenfunction): We say that φ is an eigenfunction of the problem (2.1) with
boundary conditions (2.2) if it solves the eigenvalue problem

L[φ] = λφ, φ(a) = 0, φ(b) = 0 (2.4)

for some λ ∈ R (the ’eigenvalue’). Equivalently, we say that φ is an eigenfunction of the
operator L on [a, b] with boundary conditions φ(a) = 0, φ(b) = 0.

Note: the boundary conditions (2.2) can be replaced with some other conditions; the
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definition is the same. The boundary conditions for φ are the result of plugging u = φ(x)
into the boundary conditions for u.

Important note: To have an eigenfunction of the operator L, we must prescribe an
interval [a, b] and associated boundary conditions.

For instance, for the problem

ut = uxx, x ∈ (0, π) t > 0,

u(0, t) = ux(π, t) = 0, t > 0,

the eigenvalue problem is
−φ′′ = λφ, φ′(0) = φ′(π) = 0

and we say φ is an eigenfunction for L = −d2/dx2 on [0, π] with Neumann boundary condi-
tions (or, explicitly, ‘with boundary conditions φ′(0) = φ′(π) = 0’).

Notice that the eigenvalue problem is an ODE, so we are really studying a type of ODE
problem and making use of it (later) to solve PDEs. In the following section, we forget about
the PDE part for now and find some eigenfunctions in typical cases.

Notation (why the negative sign?): The negative sign is just convention and is not
necessary; we could instead write

ut = L[u], L =
∂2

∂x2
.

The ODE for the eigenvalue problem is then

φ′′ = λφ

which is the same as the eigenvalue problem for L = −∂2/∂x2, with the sign of λ reversed
since

−φ′′ = (−λ)φ.

Since λ is an unknown anyway, it does not matter; we will just get λ’s that differ by a
negative sign and the eigenfunctions will be the same.

The reason for using the negative sign is that it tends to make most, if not all, the
eigenvalues positive (rather than mostly/all negative); see examples below.
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3. Solving the eigenvalue problem

An operator L in [a, b] with homogeneous boundary conditions has an associated eigen-
value problem to find an eigenfunction φ in [a, b] and an eigenvalue λ such that

Lφ = λφ, (hom. BCs for φ) (3.1)

Procedure for eigenvalue problems: The general procedure for solving the eigenvalue
problem (3.1) is

a) In each range of λ where the DE has a certain form, find the general solution

φ = c1φ1 + · · ·+ cnφn

where n is the order of the DE, using standard ODE solving techniques.

b) Use the boundary conditions Bφ = 0 to get ≈ n equations for the c’s (plus any other
constraints relevant to the problem from elsewhere)

c) Find all λ such that there are non-trivial solutions (c’s not all zero) and identify the
eigenfunction (basis for each set of solutions to Lφ = λφ)

• For (c), often the equation has the form A(λ)c = 0 so the condition for an eigenvalue
λ is that detA(λ) = 0 (to get a non-trivial solution)

There are three standard examples. Consider the operator

Lu = −d
2u

dx2

in [0, π] with three different boundary conditions. The eigenfunctions should look familiar.

3.1. Dirichlet BCs. The eigenvalue problem for φ(x) is

−φ′′ = λφ, x ∈ (0, π), φ(0) = 0, φ(π) = 0.

To solve it, find the general solution to the DE, then use the boundary conditions and look
for values of λ such that a non-trivial solution exists.

Case 1: λ < 0. We will show here that no solutions exist. The characteristic polynomial is

r2 + λ = 0.

which has roots ±µ where µ =
√
−λ. Then the general solution is

φ = c1e
xµ + c2e

−xµ.

Apply the boundary conditions to get a system for coefficients c1, c2:

0 = c1 + c2, 0 = c1e
πµ + c2e

−πµ.

This system, in matrix form, is (
1 1
eπµ e−πµ

)(
c1
c2

)
=

[
0
0

]
.

It has a non-trivial solution if and only if the determinant is zero. But

det(· · · ) = e−πµ − eπµ = 2 sinh(πµ) > 0,
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so there is only the trivial solution (i.e. c1 = c2 = 0 is the only solution) for all µ. We
conclude there are no negative eigenvalues.

Case 2: λ = 0. The general solution is φ = c1x + c2. Applying the boundary conditions,
we need b = c2 and c1π+c2 = 0 which forces c1 = c2 = 0. So again, no eigenvalues in this case.

Case 3: λ > 0. The general solution is

φ = c1 sin(
√
λx) + c2 cos(

√
λx).

From the boundary conditions,

c2 cos 0 = 0

c1 sin(
√
λπ) + c2 cos(

√
λπ) = 0

so c2 = 0. To have a non-trivial solution (c1 6= 0) we need

sin(
√
λπ) = 0.

This has a non-trivial solution when
√
λπ = nπ, n = 1, 2, · · ·

i.e. for eigenvalues λn = n2 (note that λ had to be positive to get here, so the − root
is discarded!). Plugging back into the general solution (recall that c2 = 0) we obtain the
corresponding eigenfunctions

φn = sinnx.

Summary: Collecting the results of the three cases, we gfind that only the λ > 0 case yields
eigenvalues. The total set of eigenvalues/functions is

λn = n2, φn = sinnx, n = 1, 2, 3, · · · ,
which is exactly the basis from the Fourier sine series.

3.2. Neumann BCs. The eigenvalue problem is

−φ′′ = λφ, x ∈ (0, π), φ′(0) = 0, φ′(π) = 0.

Case 1: λ < 0. Again let µ =
√
−λ. The general solution is the same as before, and the

boundary conditions require (check this!)

0 =
√
µ(c1 − c2), 0 =

√
µ
(
c1e

πµ − c2e−πµ
)
.

Again write (
1 −1
eπµ −e−πµ

)(
c1
c2

)
=

[
0
0

]
.

The determinant is −2µ sinh(πµ) < 0. Note that eπµ > 1 and e−πµ < 1 since µ > 0. Thus
there are still no solutions.

Case 2: λ = 0. The general solution is

φ = c1x+ c2.

The boundary conditions require only that c1 = 0, so φ = 1 is an eigenfunction for λ = 0.
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Case 3: λ > 0. The general solution is the same as before; the boundary conditions re-
quire

c1 = 0, −
√
λc2 sin(

√
λπ) = 0.

Thus we need
√
λπ = nπ, so the eigenvalues are

λn = n2, n = 1, 2, · · ·
with corresponding eigenfunctions

φn = cosnx

So in summary, the eigenfunctions/values are

λn = n2, φn = cosnx, n = 0, 1, 2, · · · .
which are the basis functions for the Fourier cosine series. Note that n = 0 is included here
(from Case 2), which is absent from the Dirichlet version.

3.3. Periodic BCs. Take the domain to be [0, 2π] for reasons to be clear. The problem is

−φ′′ = λφ x ∈ (0, 2π), φ(0) = φ(2π), φ′(0) = φ′(2π).

For the details, see HW. The result is that, for λ = µ2,

cos(2πµ) = 1

which occurs for the values µn = n for n = 0, 1, 2, · · · . We find that the eigenfunctions are

φ = c1 cosnx+ c2 sinnx

which are solutions for all n ≥ 0 with eigenvalue λn = n2. Unlike the Dirichlet and Neumann
problems, both terms are allowed. This means we have eigenfunctions

φn = cosnx, ψn = sinnx with λn = n2 for n = 1, 2, · · ·
This is, of course, the basis for the full Fourier series (computed on [0, 2π] rather than [−π, π],
but it is the same up to this translation).

Notes on the mechanics: Some points to note when computing eigenfunctions:

• If φ is an eigenfunction so is any scalar multiple since eigenvalue problems are always
linear homogeneous. We always end up multiplying by an arbitrary constant later,
so it does not matter which multiple you choose (e.g. sin(nπx) or 2 sin(nπx).

• Setting λ = µ2 is just to avoid writing
√
−λ or

√
λ.

• The cases are usually but not always λ positive/zero/negative.
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4. Eigenfunctions and orthogonal bases

The eigenfunctions for L = −d2/dx2 with any of the standard homogeneous BCs are
similar. The BCs all have the form

αφ(a) + βφ′(a) = 0 (4.1)

e,g. Dirichlet means β = 0 and Neumann means α = 0.

It turns out that the eigenfunctions are - under suitable technical conditions - an orthogonal
basis for functions on [a, b]. One version of the theorem2 is as follows (we’ll generalize later):

Theorem on eigenfunctions: Consider the operator

L = − d2

dx2

in an interval [a, b] and the eigenvalue problem

Lφ = λφ, with BCs of the form (4.1) at x = a and x = b. (4.2)

Then the set of eigenfunctions {φn} solving (4.2) forms an orthogonal basis for L2[a, b]
Moreover, it is true that

i) There is one eigenfunction for each eigenvalue,

ii) There are infinitely many positive eigenvalues that increase to ∞,

iii) There are finitely many negative eigenvalues.

We call the set of eigenvalues the spectrum of the operator L (in the interval [a, b] with the
associated BCs).

This theorem is a special case of the more general Sturm-Liouville theory, which ex-
tends to other operators. The key result is that the eigenfunctions form an orthogonal basis,
which permits us to represent functions in this nice basis.

Key point (eigenfunction expansion): The theorem says that any (reasonable) function
f(x) has a unique representation as an ‘eigenfunction expansion’,

f =
∑
n

fnφn, fn =
〈f, φn〉
〈φn, φn〉

=

∫ b
a
f(x)φn(x) dx∫ b
a
φ2
n dx

. (4.3)

where 〈f, g〉 =
∫ b
a
f(x)g(x) dx is the L2 inner product.

The proof is the same as for orthogonal bases of vectors in Rn. We have

〈φm, φn〉 =
∫ b
a
φm(x)φn(x) dx = 0 for m 6= n.

Now take the 〈·, φn〉 of the expression for f to get (using a dummy sum variable m)

〈f, φn〉 = 〈
∑
m

fmφm, φn〉 =
∑
m

fm〈φm, φn〉 = fn〈φn, φn〉.

2Note: the theorem is a consequence of a spectral theorem for L2-like spaces, a rather deep result in
analysis/linear algebra that generalizes of the spectral theorem for symmetric matrices. As it is well beyond
the scope of the course, you will have to take this result on faith.



EIGENFUNCTIONS AND EIGENVALUES 11

5. Properties of eigenfunctions

First, an analogy from linear algebra. Let A ∈ Rn×n be a real symmetric matrix in Rn,
i.e. AT = A and recall that the ‘inner product’ is the dot product

〈x,y〉 = x · y = xTy.

An important property is that eigenvectors for distinct eigenvalues are orthogonal.

Proof. Let v1 and v2 be eigenvectors for eigenvalues λ1 and λ2. Then

Av1 = λ1v1

Av2 = λ2v2

Now take the inner (dot) product of the first line with v2 and of the second line with v1:

(Av1)
Tv2 = λ1v

T
1 v2

vT1 (Av2) = λ2v
T
1 v2

(5.1)

But A is symmetric so the left hand sides are equal:

AvT1 v2 = vT1A
Tv2 = v1Av2. (5.2)

It follows from (5.1) that

λ1v
T
1 v2 = λ2v

T
1 v2 =⇒ (λ1 − λ2)vT1 v2 = 0.

If the eigenvalues are distinct, λ1 6= λ2 so vT1 v2 = 0 (i.e. the eigenvectors are orthogonal). �

Extending the idea to eigenfunctions: The eigenvalue problem for Lu = −uxx has
the same property. Consider an interval [a, b] and, for simplicity, the eigenvalue problem

−φ′′ = λφ for x ∈ (a, b), φ(a) = φ(b) = 0.

Suppose φ1 and φ2 are eigenfunctions with eigenvalues λ1 and λ2:

−φ′′1 = λ1φ1

−φ′′2 = λ2φ2

(5.3)

Take the inner product
∫ b
a
·φ2 dx with the first equation and

∫ b
a
·φ1 dx with the second to get

−
∫ b
a
φ′′1φ2 dx = λ1

∫ b
a
φ1φ2 dx

−
∫ b
a
φ1φ

′′
2 dx = λ2

∫ b
a
φ1φ2 dx

(5.4)

We can do a calculation analogous to (5.2) to show the left sides are equal. The trick here
is to integrate by parts twice and then use the boundary conditions to simplify:

−
∫ b

a

φ′′1φ2 dx = −φ′1φ2

∣∣∣b
a

+

∫ b

a

φ′1φ
′
2 dx

= (φ1φ
′
2 − φ′1φ2)

∣∣∣b
a
−
∫ b

a

φ1φ
′′
2 dx

which is Green’s identity. But φ1 and φ2 vanish at x = a, b so the boundary term is zero:

−
∫ b

a

φ′′1φ2 dx = −
∫ b

a

φ1φ
′′
2 dx. (5.5)
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In the inner product notation (and the operator Lφ = −φ′′), this reads

〈Lφ1, φ2〉 = 〈φ1, Lφ2〉
which is a property of L analogous to what we saw for a symmetric matrix. We’ll address
this property again later (it turns out to be the property that gives L its essential structure).

Completing the proof of orthogonality, by the inner-product-ed equations (5.4) and (5.5),

(λ1 − λ2)
∫ b

a

φ1φ2 dx = 0 =⇒
∫ b

a

φ1φ2 dx = 0

so the eigenfunctions are orthogonal if the eigenvalues are distinct (〈φ1, φ2〉 = 0).

For other BCs: As long as the boundary conditions cause the boundary term (φ1φ
′
2−φ′1φ2

to vanish, this proof carries through. This will be true for and of the standard homogeneous
BCs (left as an exercise).

Summary (orthogonality) For any of the standard homogeneous BCs and the eigenvalue
problem

−φ′′ = λφ, x ∈ (a, b), (BCs),

the eigenfunctions for distinct eigenvalues are orthogonal:

λi 6= λj =⇒ 0 = 〈φi, φj〉 =

∫ b

a

φiφj dx

which we can show by taking the inner product of each eigenvalue problem with the other
eigenfunction and integrating by parts twice. The crucial property is Green’s identity

−
∫ b

a

u′′v dx = (uv′ − u′v)
∣∣∣b
a
−
∫ b

a

uv′′ dx

which is, abstractly, the condition that the operator L is symmetric:

〈Lu, v〉 = 〈u, Lv〉 for all u, v satisfying the BCs.

(This observation will be used in full when we consider other operators L).
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5.1. Oscillation. The standing waves example suggests some intuition for understanding
the eigenvalue problem. Consider, for simplicity,

−φ′′ = λφ, φ(0) = φ(π) = 0.

For a solution to the ODE,

φ = c1 sin
√
λx+ c2 cos

√
λx,

to satisfy the BCs, it has to ‘fit’ in the domain while being zero at the endpoints. The
functions sin and cos oscillate, hitting zero at the endpoints only for certain frequences

√
λn.

The frequency must be such that the solution (the eigenfunction) φ oscillates an integer num-
ber of times from zero back to zero. This is why the eigenvalues λn = n2 form a discrete set.

The same is true of other homogeneous BCs, but the condition it has to meet after
each oscillation is different. This is shown below for Neumann BCs (λn = (nπ/L)2 and
φn = cos(nπx/L) and for Dirichlet at one end, Neumann at the other (λn = ((n−1/2)π/L)2

and φn = sin((n− 1/2)πx/L)):
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For contrast, consider attempting to solve the eigenvalue problem in an infinite domain:

−φ′′ = λφ for x ∈ (0,∞), φ(0) = 0, |φ| <∞.
Looking for a solution and applying the BC at x = 0 we find that

φ = c1 sin
√
λx+ c2 cos

√
λx,

0 = φ(0) = =⇒ φ = sin
√
λx is a solution for any λ > 0.

Every positive λ is an eigenvalue with eigenfunction φλ = sin
√
λx. The set of eigenvalues is

continuous. We cannot use it as a basis, etc. as in the eigenfunction method.3

5.2. Non-oscillating solutions: Recall that there were two main cases to check for

−φ′′ = λφ for x ∈ (a, b), φ(a) = φ(b) = 0,

either with oscillating solutions (λ > 0) or exponentials (λ < 0), plus a third case at λ = 0.

In the ‘non-oscillating’ case, λ < 0, the basis solutions are monotonic. There is no hope
of finding an infinite set of eigenfunctions here because they do not oscillate (and here, there
are no eigenfunctions at all). However, there can be a finite number of eigenfunctions
in this ‘non-oscillating’ case (we’ll see examples later).

5.3. Identifying the cases. The cases are typically separated by λ = 0, but not always.
The breakpoint between oscillating/non-oscillating solutions depends on the ODE, e.g.

φ′′ + φ = −λφ =⇒ char. poly. p(r) = r2 + r + λ

=⇒ r =
1

2
(−1±

√
1− 4λ) =⇒ oscillating solutions iff λ > 1/4

For another simple but useful example, suppose

Lφ = −φ′′ + γφ, ...BCs...

This is a shifted version of the usual −φ′′ operator:

Lφ = L̃φ+ γφ, L̃φ := −φ′′.
If φ̃n and λ̃n are eigenfunctions/values of L̃ then

Lφn = L̃φn + γφn = (λ̃n + γ)φn.

It follows that the eigenfunctions for L are the same as for L̃, with shifted eigenvalues

λn = λ̃n + γ.

That is,  L is the original operator shifted by a multiple γ of the identity. This means that
shifted eigenvalue problems can be solved quickly using standard results e.g.

−φ′′ + 6φ = λφ, φ(0) = φ(π) = 0 =⇒ φn = sinnx, λn = n2 + 6, n ≥ 1.

3There is a way around this, by using an integral transform (see Fourier/Laplace transform).
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5.4. Rayleigh quotient. A useful trick for showing that eigenvalues are positive. Again,
consider as an example the eigenvalue problem

−φ′′ = λφ for x ∈ (a, b), φ(a) = φ(b) = 0.

Suppose φ is an eigenfunction with eigenvalue λ. The goal is to integrate and manipulate
the equation to get only squared terms like

∫
φ2 dx whose sign is known.

To start, multiply by φ and integrate to get

−
∫ b

a

φφ′′ dx = λ

∫ b

a

φ2 dx. (5.6)

The integral on the left is of unknown sign, so integrate by parts once:∫ b

a

φφ′′ dx = φφ′
∣∣∣b
a
−
∫ b

a

(φ′)2 dx.

Plugging this into (5.6) gives ∫ b

a

(φ′)2 dx− φφ′
∣∣∣b
a

= λ

∫ b

a

φ2 dx.

We may now ‘solve’ for λ in terms of φ to get the Rayleigh quotient

λ =
−φφ′

∣∣∣b
a

+
∫ b
a
(φ′)2 dx∫ b

a
φ2 dx

. (5.7)

Note that φ is non-trivial so the denominator is non-zero.

Now return to the example eigenvalue problem with boundary conditions φ(a) = φ(b) = 0.
We claim that the eigenvalues are strictly positive. Observe that

λ =

∫ b
a
(φ′)2 dx∫ b
a
φ2 dx

≥ 0.

Moreover, since
∫ b
a
f 2 dx = 0 implies f(x) = 0 for all4 x ∈ [a, b],

λ = 0 ⇐⇒ φ′(x) = 0 ⇐⇒ φis constant.

But φ(a) = 0 so this further means that φ = 0. But φ is not trivial, so λ cannot be zero.

Summary (Rayleigh quotient): A method to show that eigenvalues are non-negative
(λ ≥ 0) or strictly positive (λ > 0) without knowing the eigenfunction φ. For

−φ′′ = λφ, x ∈ (a, b), ...BCs...,

multiply by φ and integrate over (a, b) and integrate by parts once to get

λ

∫ b

a

φ2 dx = −φφ′
∣∣∣b
a

+

∫ b

a

(φ′)2 dx. (5.8)

If the boundary terms are ≥ 0, then it follows that λ ≥ 0. To check λ = 0, use the fact that∫
f 2 dx = 0 =⇒ f = 0 and see if a solution φ can still exist.

4Technically, for almost all - it can be non-zero at isolated points, but the distinction is not important.
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