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Topics covered

• Fourier series
◦ The main theorem
◦ Periodic functions and extensions
◦ Examples, computational tricks
◦ Sine and cosine series
◦ Connection to PDEs

• Convergence of Fourier series
◦ Convergence (in L2)
◦ Pointwise and uniform convergence
◦ Oscillations at discontinuities (Gibbs’ phenomenon)

• Additional topics
◦ Decay of coefficients
◦ Details of Gibbs’ phenomenon

1. Fourier series

Before returning to PDEs, we explore a particular orthogonal basis in depth - the Fourier
series. This theory has deep implications in mathematics and physics, and is one of the
cornerstones of applied mathematics (not just a tool for solving PDEs!). Some results here
must be taken on faith, as their proof requires analysis beyond the scope of the course.

This will also provide some exposure to the bases that we will use to solve PDEs later.

1.1. L2 as a space of periodic functions. Here, we primarily work in the L2 space

L2[−π, `] = {f : [−`, `]→ R :

∫ `

−`
|f(x)|2 dx <∞}. (1)

This space can be identified with a different space (same elements, very different inter-
pretation). Recall that a function is periodic (with period T ) if

f(x+ T ) = f(x) for all x.

Every 2` periodic function defined for all x ∈ R can be identified with an element of L2[−`, `]
by restricting to the interval [−`, `]. Nothing is lost since the function repeats after one pe-
riod.

We may therefore view L2([−`, `]) as the space of 2`-periodic functions defined on all of R.
1
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To go from f : [−`, `] → R to a periodic function on R, we define the 2`-periodic
extension to be the function given by f on [−`, `] and

f(x+ 2`) = f(x) for all x

which defines f on all of R.

Important note (endpoints): If the values at the endpoints do not match, then this just
means there is a discontinuity at that point (see examples below) and we assign some value
at the discontinuity. Technically, the value at exactly the endpoint is ambiguous and the
periodic extension may not agree with f at such points, but that does not matter.

In terms of maps between spaces, we have

L2[−`, `]
restrict to [−`,`]
↼−−−−−−−−−−−−−−−−−−⇁

extend to R
{f : R→ R, 2`-periodic}.

For example the figure below shows the periodic extensions for

f(x) = |x|, x ∈ [−1, 1] (2-periodic)

and

f(x) = sin x, x ∈ [−π, π] (2π-periodic)

and

f(x) = sinx, x ∈ [−π/2, π/2] (π-periodic).

Note that the last two examples show that the periodic extension of a function will depend
on the period specified. The π-periodic extension of sinx from [−π/2, π/2] to R is
different than the periodic extension from [−π, π] to R.
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Theorem (Fourier basis): The set of functions

1

2
and sin

nπx

`
, cos

nπx

`
for n = 1, 2, · · · (2)

is an orthogonal basis for the space L2[−`, `]. That is, every function f ∈ L2[−`, `] has a
unique representation (the Fourier series)

f =
a0
2

+
∞∑
n=1

an cos
nπx

`
+ bn sin

nπx

`
(3)

with equality in the sense described in subsection 1.3. A single term in the sum, an cos nπx
`

+

bn sin nπx
`

is sometimes called the n-th Fourier mode of the function. Note that the 1
2

could
be any constant; the value 1/2 is a convention.

Interpretation: Every periodic function with period T can be decomposed into a sum of
sines and cosines whose frequencies are integer multiples of the ‘fundamental’ frequency 1/T
(in period/time).

1.2. Fourier series: the main result. Since the Fourier series for f on [−`, `] is 2`-
periodic, we can think of (2) as a basis for 2`-periodic functions on R. Often, however, we
really only need it to represent a function on some interval, and the periodic extension and
periodicity of the series is not needed.

For brevity, let φ0 = 1/2 and

φn = cos
nπx

`
, ψn = sin

nπx

`
.

Explicitly, the orthogonality relations are∫ `

−`
φmψn dx = 0, for all m,n, (4)∫ `

−`
φmφn dx =

{
0 m 6= n

` m = n and m 6= 0,
(5)

∫ `

−`
ψmψn dx =

{
0 m 6= n

` m = n
(6)

along with the integral for m = n = 0.

Because the basis is orthogonal, it is straightforward to compute the coefficients, e.g.

an =
〈f, φn〉
〈φn, φn〉

.

The results are given below.
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Computing the Fourier series: The coefficients of the Fourier series (3) are given by

an =
1

`

∫ `

−`
f(x) cos

nπx

`
dx (7)

bn =
1

`

∫ `

−`
f(x) sin

nπx

`
dx (8)

for n ≥ 1, and

a0 =
1

`

∫ `

−`
f(x) dx.

Note that the formula (7) works for n = 0 as well.

1.3. Partial sums and convergence. The N -th partial sum of the Fourier series is the
(finite) sum

SN(x) =
a0
2

+
N∑
n=1

(
an cos

nπx

`
.+ bn sin

nπx

`
.
)

which consists of the Fourier modes up to N .

This partial sum is an approximation to f(x). In fact, it is often a very good approximation.
We use this to precisely define the equality in (2):

Convergence of Fourier series (mean square): Let f ∈ L2[−`, `]. Then the partial
sums Sn(x) of its Fourier series converge to f in the L2 norm; that is,

lim
N→∞

‖f − SN(x)‖2 = 0.

Explicitly, the ’mean square’ (or L2) distance between the SN and f goes to zero:

lim
N→∞

∫ π

−π
|SN(x)− f(x)|2 dx = 0. (9)

If f ∈ L2[−π, π] we simply write that it is ’equal’ to its Fourier series,

f(x) =
a0
2

+
∞∑
n=1

an cosnx+ bn sinnx

where the equality is meant in the sense of (9).

The theorem is important because it says that a nice function f(x) on [−π, π] (or a peri-
odic function) can be approximated by its first N Fourier modes. Adding more modes (more
terms to the sum) improves the approximation. In practice, functions are often surprisingly
well-approximated by even just a few modes, as we will see. There are, however, some ex-
ceptions.
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It is critical to note that the convergence result (9) does not mean that plugging in a
specific value of x gives an equality. That is, it is not necessarily true that

lim
n→∞

Sn(x) = f(x)

for all x ∈ [−`, `]. The examples below illustrate this; technical details are in section 3.

2. Computing Fourier series

Here we compute some Fourier series to illustrate a few useful computational tricks and
to illustrate why convergence of Fourier series can be subtle. Because the integral is over a
symmetric interval, some symmetry can be exploited to simplify calculations.

2.1. Even/odd functions: A function f(x) is called odd if

f(x) = −f(−x) for all x

and even if

f(x) = f(−x) for all x.

Due to the odd/even symmetry, integrals over intervals symmetric around zero are nice:

if f is odd,

∫ `

−`
f(x) dx = 0,

if f is even,

∫ `

−`
f(x) dx = 2

∫ `

0

f(x) dx.

Products of even/odd functions are even or odd (hence the name):

odd · odd = even, odd · even = odd.

Some common even/odd functions (m is an integer):

odd: x2m+1, sin kx, · · ·
even: x2m, cos kx, · · ·

As an example, ∫ 1

−1
x6 sin 2x+ 3x2 dx =

∫ 1

0

3x2dx = x3
∣∣∣1
0

= 1.

For the first term: since x6 is even, sin 2x is odd so x6 sin 2x is odd.

2.2. Triangle wave. Define a function f ∈ L2[−1, 1] as

f(x) = |x| for x ∈ [−1, 1].

The function and its periodic version are shown below:
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To compute the Fourier series, use (4)-(6) with ` = 1. First, observe that f(x) is an even
function, so

f(x) cosnπx is an even function, f(x) sinnπx is an odd function (10)

for all n (note that the product of an odd and even function is odd).

For the cosine coefficients, we have

a0 =

∫ 1

−1
f(x) dx = 2

∫ 1

0

x dx = 1,

and for n ≥ 1,

an =
1

`

∫ `

−`
f(x) cos(nπx) dx

= 2

∫ 1

0

x cos(nπx) dx (since the integrand is even)

=
[ 2

nπ
x sin(nπx) +

2

n2π2
cos(nπx)

]∣∣∣∣∣
1

0

=
2

n2π2
cos(nπx)

∣∣∣1
0

(since sin(nπ) = 0 for all n)

=
2

n2π2
((−1)n − 1).

Thus the cosine coefficients are

a0 = 1, an =

{
− 4
n2π2 for odd n

0 for even n > 0
.

For the sine coefficients, the integrand is odd due to (10), so

bn =
1

`

∫ `

−`
f(x) sin(nπx) dx = 0 for all n.

The Fourier series for f is therefore

f(x) =
1

2
− 4

π2

∞∑
n=1

1

(2n− 1)2
cos((2n− 1)πx).

The first few partial sums SN(x) (with modes up to N) are

S1 =
1

2
− 4

π2
cosπx, S3 =

1

2
− 4

π2
(cos πx+

1

9
cos 3πx), · · ·

A plot shows that agreement is quite good, even with only a few terms (Figure 1). The error
is worst at the peaks of the function, where it has a sharp corner.
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Figure 1. Partial sums S1, S3 and S21 for the triangle wave. Zoomed in plot
shows the convergence at a peak of the triangle.
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2.3. Square wave. Let

f(x) =

{
−1 −1 ≤ x < 0

1 0 < x ≤ 1

and f(x) = f(x+ 2) when x /∈ [−1, 1] as shown below:

Note that f(x) is an odd function so

an =

∫ 1

−1
f(x) cos(nπx) dx = 0 for all n.

For the sine coefficients, use the fact that f(x) sinnπx is an even function:

bn =

∫ 1

−1
f(x) sin(nπx) dx

= 2

∫ 1

0

sin(nπx) dx (since the integrand is even)

= − 2

nπ
cos(nπx)

∣∣∣1
0

=

{
4/(nπ) for odd n

0 for even n
.

Thus the Fourier series for f(x) is

f(x) =
4

π

∞∑
n=1

1

2n− 1
sin((2n− 1)πx).

The first few partial sums are

S1(x) =
4

π
sin πx, S3(x) =

4

π

(
sin πx+

1

3
sin 3πx

)
, · · · .

Error: A plot of the approximation (Figure 2) shows that the partial sums converge nicely
where f is continuous, but do not perform well at all near the discontinuity. The partial sums
tend to oscillate and overshoot the discontinuity by a significant amount. This overshoot -
by about 0.18 - is typical at discontinuities, and is called Gibbs’ phenomenon.

The oscillations suggest we must be careful with the infinite series - the convergence is
not so straightforward. In the next sections, we develop the theory in more detail.
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Figure 2. Partial sums for the square wave. Zoomed in figure shows the
behavior near the corner at x = 1. Note that the oscillations around the
discontinuity do not decrease in size as N →∞.

3. Types of convergence

It is worth clarifying the ways the series can converge (or fail to converge), in order to
better understand what equality means in the Fourier series (3). There are several ways
we can measure the error between the partial sum and the function. There are three main
notions of convergence that are important here. In this section, we consider a function
f ∈ L2[−`, `] and its Fourier series

a0
2

+
∞∑
n=1

(
an cos

nπx

`
+ bn sin

nπx

`

)
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The N -th partial sum is defined to be the sum of terms up to n = N :

SN(x) =
a0
2

+
N∑
n=1

(
an cos

nπx

`
+ bn sin

nπx

`

)
.

Convergence (definitions): Let fn be the sequence of functions in L2[−`, `].

The sequence is said to converge in norm (or ‘in L2’) to a limit f if

‖fn − f‖2 → 0 as n→∞
That is, ∫ `

−`
|fn(x)− f(x)|2 dx→ 0 as n→∞.

The sequence converges pointwise to f if

lim
n→∞

fn(x) = f(x) for all x ∈ [−`, `].

The sequence converges uniformly to f if

max
x∈[−`,`]

|fn(x)− f(x)| → 0 as n→∞.

L2 convergence means that the mean-square error goes to zero; the weighted average of the
area between the partial sums and the function goes to zero. However, it does not require
convergence at each point (for instance, the square wave in the previous section).

Pointwise convergence is simpler: it says that at each point x, the value of the partial
sums at x will converge to the value of f(x). It does not, however, require that the partial
sums converge at the same rate at each x. It could be that at some points, SN(x) → f(x)
quickly, but at other points, it converges (arbitrarily) slowly (see box below).

Uniform convergence says that the maximum error1 between SN(x) and f(x) decreases
to zero as N →∞.

In general, neither of pointwise or norm convergence implies the other. Uniform conver-
gence is stronger than the other two.

Example (pointwise but not uniform): Consider

fn = xn on [0, 1], n = 1, 2, · · ·
which converges pointwise to the function

f(x) =

{
0 if 0 ≤ x < 1

1 if x = 1
.

1technically, the ‘max’ here should be sup |fn(x) − f(x)| (the least upper bound of the error) since the
maximum may not be achieved.
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To see this, note that fn(1) = 1 for all n (so fn(1)→ 1) and

lim
n→∞

xn = 0 if 0 < x < 1.

However, for x < 1,
|fn(x)− f(x)| = xn

and xn can be made arbitrarily close to 1 by taking x close enough to 1 (for any n). Thus
the maximum error is always 1. The interval where the error is near 1 shrinks in size as n
increases, but the max. error never decreases.

3.1. Pointwise and uniform convergence for the Fourier series. The Fourier series
is defined for functions in L2, which allows for discontinuities. We will need to be precise
about values at discontinuities. For a function with jump discontinuities, define the ‘right’
and ’left’ limits

f(x+) = lim
ξ↘0

f(ξ), f(x−) = lim
ξ↗0

f(ξ).

If f is continuous at x then f(x+) = f(x−) = x. We have the following result (due to
Dirichlet in the early 1800s):

Theorem (Pointwise convergence): Let Sn(x) be the n-th partial sum of the Fourier
series for a periodic function f ∈ L2[−`, `].

(i) If f (as a periodic function) and f ′ are continuous, then the partial sums converge to
f(x) uniformly as n→∞, i.e.

lim
n→∞

Sn(x) = f(x) for all x ∈ [−`, `].

(ii) If f and f ′ are continuous except at some jump discontinuities, then

lim
n→∞

Sn(x) =

{
f(x) if f is continuous at x
1
2
(f(x−) + f(x+)) if f has a jump at x.

That is, the partial sums converge to the average of the left and right limits.

Note that for f to be continuous as a periodic function, it must be true that the endpoint
values match, i.e. f(−`) = f(`). If they do not, then only the second part applies.
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For the square wave example, the partial sums converge to the average (−1 + 1)/2 = 0
at x = ±` and x = 0. Otherwise, the partial sum Sn(x) at a point x will converge to f(x).

Note that ‘f ′ is piecewise continuous’ means that between the discontinuities, f has a con-
tinuous derivative2.

Interpretation: As shown in the sketch, to fit the discontinuity the sines/cosines need
to have a maximum at the top and minimum at the bottom of the jump; thus the oscilla-
tions will oscillate around the midpoint.

It tends to be true that if there is a discontinuity, the convergence near this jump (ex-
cluding the jump itself) is pointwise (as guaranteed by (ii)) but not uniform. That is, there
will always be an overshoot of some non-vanishing size, no matter how many terms we add.
The oscillations around the discontinuity are discussed in detail in the next section.

4. Examples of convergence

4.1. Triangle wave. Consider again the triangle wave

f(x) = |x| for x ∈ [−1, 1], f(x) = f(x+ 2).

Note that since f(−1) = f(1) = 1, the endpoints match, so the periodic extension will be
continuous at these points. Since f(x) is otherwise continuous, we see that f (as a 2-periodic
function) is continuous.

Similarly, we have

f ′(x) =

{
−1 −1 < x < 0

1 0 < x < 1

and f ′(x) undefined at x = 0,±1. Thus f ′ is piecewise continuous.

It follows from the convergence theorem that the partial sums converge pointwise to f(x),
and moreover they actually converge uniformly to f(x).

The situation we observed in Figure 1 agrees with the theorem; The error is largest at
the corner, and that error decreases to zero as N →∞ (albeit slowly).

4.2. Square wave. We may now finish discussing convergence the square wave.

Recall that we found the Fourier series for the square wave defined by

f(x) =

{
−1 −1 ≤ x < 0

1 0 < x ≤ 1
(11)

2The assumptions here are only sufficient; the theorem can be relaxed somewhat but the analysis becomes
much more difficult. Fortunately, most functions in practice will be nice between discontinuities.
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and f(x) = f(x + 2) when x /∈ [−1, 1]. Let us consider f(x) on the interval [−1, 1]. The
Fourier series for f(x) is

f(x) =
4

π

∞∑
n=1

1

2n− 1
sin((2n− 1)πx).

As a periodic function in L2[−1, 1], f(x) is continuous except for discontinuities at x = 0
and x = ±1. Note that f(−1) = −1 and f(1) = 1; the endpoints do not match, so the
periodic version has discontinuities at ±1,±3, · · · and so on.

Pointwise convergence: For the purposes of the convergence theorem, f defined on [−1, 1]
has discontinuities at the endpoints, and

f(1−) = −1, f(1+) = −1.

We also have

f(0−) = 1, f(0+) = 1.

It follows that the partial sums converge to f(x) when x 6= −1, 0, 1 and converge to 0 at all
the discontinuities (the average is always 1

2
(−1 + 1) = 0). Define

f̃(x) =
1

2
(f(x−) + f(x+)) =

{
f(x) if x 6= 0,±1

0 x = 0,±1
.

Then the convergence theorem says that

f̃(x) = lim
N→∞

SN(x) for x ∈ [−1, 1].

In particular, it does not matter how f(x) in (11) is defined at the discontinuities; the Fourier

series will converge to f̃(x) regardless of the values chosen for f(±1) and f(0).

Remark: Note that in this case, the theorem is not needed to see what happens at the
discontinuities since

SN(0) = SN(±1) = 0 for all N

as all the terms are zero individually.

Uniform convergence: However, f(x) is not continuous, so we cannot conclude that
the convergence is uniform. Indeed, it is not, as we have seen by direct inspection. The
overshoot at the discontinuities never goes away, and it is true that

max
x∈[−1,1]

|f(x)− Sm(x)| ≈ 0.18 as m→∞.

Proving this requires some work; see section 7.
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The partial sums tend to oscillate and overshoot the discontinuity by a significant amount,
no matter how large we make N . The persistent overshoot here is called Gibbs’ phenom-
enon, and is how Fourier series generically behave at discontinuities.

Gibbs’ phenomenon (summary): If f(x) has a discontinuity then the partial sums SN(x)
of the Fourier series will over-shoot the true value of f(x) at the top part of the discontinuity
and undershoot the bottom part. The amount of the overshoot approaches a constant as
N → ∞ and the overshoot is roughly 9% of the jump height on each end.

Why not uniform convergence? Since f ∈ L2[−1, 1], we have that

‖f − SN‖2 =

∫ 1

−1
|f(x)− SN(x)|2 dx→ 0 as N →∞.

Thus, we have that

• SN converges in norm to f
• SN converges pointwise to f̃ (to f except at discontinuities)
• SN does not converge uniformly to f : the max. error is always around 0.18.

How can it be that the series converges at (almost all) points, and yet the maximum error
never decreases?

Why in norm, but not uniform: The approximation gets better away from the dis-
continuities (the ‘good’ region) but always overshoots near the discontinuities (the ‘bad’
region); see figure below. Because of the integral over [−1, 1] the mean square error, very
roughly, looks like

‖f − SN‖2 ∼ error in good region + (height of overshoot)× (width of bad region).

As N →∞, we observe that the width of the bad region goes to zero while hte height stays
the same, so the second term goes to zero. In the good region, the oscillations around ±1
shrink, and the error decreases nicely at each point so the first term also goes to zero.
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Why pointwise, but not uniform: Suppose x0 ∈ (0, 1). Fix this value and consider

lim
N→∞

SN(x0).

Observe from the figure that the ’bad’ region where the error is large gets compressed closer
and closer to x = 1. For large enough N , it is confined to a small interval around 1, so x0
will eventually be outside the bad region.

Outside the bad region, the oscillations decrease in magnitude, and convergence is nice.
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5. Sine and cosine series

Suppose f(x) is defined on [0, `]. Here we consider the problem of finding a Fourier series
that is 2` periodic and is equal to f on [0, `]. We can ‘fill in’ the other half [−`, 0] with an
arbitrary function, then extend to a periodic function R using f(x) = f(x+ 2`).

Any such extension to [−`, `] has a (unique) Fourier series, which will be equal to f(x)
on [0, `]. The freedom to choose a series (by picking its values on [−`, 0]) will be useful later
in solving boundary value problems. We will make use of the symmetry of odd and even
functions as defined in section 2. First, as seen in section 2, note that if f(x) is an odd
function then f(x) cosnπx/` is odd for all n so

an =

∫ `

−`
f(x) cos

nπx

`
dx = 0 for all n.

Since f(x) sinnπx/` is even,

bn =
2

`

∫ `

0

f(x) sin
nπx

`
dx.

A similar argument holds for even functions, leading to a useful rule:

Fourier series for odd/even functions: If f ∈ L2[−`, `] is an even function then

f =
a0
2

+
∞∑
n=1

an cos
nπx

`

where

an =
1

`

∫ `

−`
f(x) cos

nπx

`
dx =

2

`

∫ `

0

f(x) cos
nπx

`
dx.

If f ∈ L2[−`, `] is an odd function then

f =
∞∑
n=1

bn sin
nπx

`

where

bn =
2

`

∫ `

0

f(x) sin
nπx

`
dx.

5.1. Odd/even periodic extensions. For f(x) defined on [0, `], the two important exten-
sions are the ones that have odd/even symmetry:

The even extension of f(x) defined on [0, `] to the new interval [−`, `] is

g(x) =

{
f(x) 0 ≤ x < `

f(−x) −` < x ≤ 0.

That is, we fill in the [−`, 0] part by reflecting f(x) across the y-axis.
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The odd extension of f(x) to [−`, `] is

g(x) =


f(x) 0 < x < `

0 x = 0

−f(−x) −` < x < 0.

It is easy to see that the even extension is always an even function and the odd extension is
always an odd function. The even/odd extensions of the function

f(x) = x for x ∈ [0, 1]

to [−1, 1] and the corresponding periodic extensions (with period 2) are shown below.

Remark (other extensions): For a function f ∈ L2[0, `], there are many choices for
extensions to a 2`-periodic function. We could, in in principle, fill in whatever values we
want in [−`, 0]. The even/odd extensions are discussed here because they have nice/useful
properties due to the symmetries.

Other extensions are useful too, but are more specific so they will not be discussed.

5.2. Fourier sine and cosine series. Now let’s consider a function f(x) on [0, `]. Suppose
we want to write f in terms of a Fourier series (using the basis for [−`, `]). This can be done
by extending f to [−`, `] in whatever way, then finding the series for the extension. The two
notable ones are:

The Fourier sine series for f(x) is the Fourier series of the odd extension of f(x) to
[−`, `]. By the previous discussion, all the cosine coefficients will vanish (hence the name).

The Fourier cosine series for f(x) is the Fourier series of the even extension of f(x)
to [−`, `]. All the sine coefficients vanish.
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Note that the above means that a function on [0, `] (without any other context) has a Fourier
sine series and a Fourier cosine series,both of which equal f (in the appropriate sense)
in (0, `). However, they do not agree on [−`, 0]. That is, we can find representations

f =
a0
2

+
∞∑
n=1

an cos(nπx/`)

and

f =
∞∑
n=1

bn sin(nπx/`)

where both series converge to the same function in (0, `).

It is important to note that the extension of f to an even/odd periodic function may intro-
duce a discontinuity at x = 0 or x = ` (see example below)!

An example of sine/cosine series: Consider the function

f(x) = 1, x in [0, π].

Suppose we wish to find a Fourier series representation for f(x) with period 2π. Because
only half the function values are specified, we have freedom to fill in the other half - so
there are many possible choices for an approximation. The periodic even/odd extensions
(with period 2) are shown below:
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The cosine series with period 2π for f(x) is the Fourier series for

f(x) = 1, x in [−π, π].

This series is quite easy to find, because f(x) = 1 is orthogonal to all the basis functions
except 1. Thus all the Fourier coefficients are zero except a0, and the series is just

f(x) = 1,

which is (trivially) the series for the ‘periodic’ function f(x) = 1 defind for x ∈ R.
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On the other hand, the sine series with period 2π is the Fourier series for

f(x) =


1 0 < x < 1

0 x = 0

−1 −1 < x < 0

, x ∈ [−π, π].

This series (which was computed earlier) is

f(x) =
4

π

∞∑
n=0

1

2n− 1
sin((2n− 1)x).

The series converges to f(x) for x ∈ (−π, π) and to 0 (the average of −1 and 1 when
x = ±π. Note that the sine/cosine series agree on (0, π) but not at x = 0 or x = π.

There are other possible extensions. If extended to be zero for [−1, 0], i.e.

f(x) =

{
0 −1 < x < 0

1 0 < x < 1

then the Fourier series coefficients are given by a0 = 1 and

an =

∫ 1

0

cos(nπx) dx =
1

nπ
sin(nπx)

∣∣∣1
0

= 0,

and

bn =

∫ 1

0

sin(nπx) dx = − 1

nπ
(cos(nπ)− 1) =

{
2
nπ

n odd

0 n even

so the Fourier series is

f(x) =
1

2
+

2

π

∞∑
n=1

1

2n− 1
sin((2n− 1)x).

It converges to 1 when x ∈ (0, π) like the sine/cosine series and 1/2 when x = 0 or
x = π. Note that this series is neither a sine or cosine series (it has non-zero an and bn
terms).

Remark: Notice that f(x) − 1/2 is an odd function, so we could have found the
Fourier series for f(x)− 1/2 knowing in advance that it should contain only sines.
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6. Decay of coefficients

The details of the derivation here are not essential; the main point is to gain some intuition
for what the Fourier coefficients look like. Consider L2[−π, π] and the Fourier series

f(x) =
a0
2

+
∞∑
n=1

an cosnx+ bn sinnx (12)

where

an =
1

π

∫ π

−π
f(x) cosnx dx, bn =

1

π

∫ π

−π
f(x) sinnx dx. (13)

One key question is the following:

How fast do the coefficients an, bn decay with n?

Worst case: It should be plausible that at the very least, we need them to go to zero
as n → ∞ for the sum to have any hope of convergence. The fundamental result is the
following:3

Riemann-Lebesgue lemma : If f ∈ L2[−1, 1] is continuous then

lim
n→∞

∫ π

−π
f(x) sinnx dx = lim

n→∞

∫ π

−π
f(x) cosnx dx = 0.

In particular, this means that for the Fourier series of f ,

lim
n→∞

an = lim
n→∞

bn = 0.

The rough idea is that the oscillation in sinnx causes more and more cancellation in the
integral as the frequency increases.

Better case: By integrating by parts, we can get a little more. Suppose f ′ is continuous
and f is continuous as a periodic function, i.e. f and f ′ are continuous in [−π, π] and

f(−π) = f(π).

Then

bn =

∫ π

−π
f(x) sinnπx dx

= − 1

nπ
f(x) cosnπx

∣∣∣π
−π

+
1

nπ

∫ π

−π
f ′(x) cosnπx dx

=
1

nπ

∫ π

−π
f ′(x) cosnπx dx.

But if f ′ is continuous on [−π, π] then |f ′| has a maximum value, say M , so

|bn| ≤
1

nπ

∫ π

−π
M dx =

2

n
.

A similar result holds for the an’s. The process can be continued so long as we have more
derivatives of f and they are continuous as periodic functions. The result is:

3The assumptions on f can be relaxed somewhat; they are simplified a bit here.
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Basic coefficient bounds: If f ∈ L2[−π, π] and its derivatives up to f (k−1) are continuous
as periodic functions and f (k) is piecewise continuous then

|an| ≤
C

nk+1
, |bn| ≤

C

nk+1

for some constant C = C(k) (independent of n but dependent on k).

The general principle is then that

smoother f =⇒ faster convergence of its Fourier series.

Informally, we get one factor of 1/n for each derivative (as a periodic function).

Examples: For the square/triangle examples:

square =⇒ jump in f =⇒ |an|, |bn| ≤ C/n

tri. =⇒ f cts. + jump in f ′ =⇒ |an|, |bn| ≤ 1/n2.

The rule gives a quick way to determine how fast coefficients decay. Consider the ‘sawtooth’

f(x) = x, x ∈ [−1, 1], period 2.

Since f(−1) 6= f(1), this function is not continuous so the decay rate is 1/n.
Now consider

f(x) = x2, x ∈ [−1, 1], period 2.

This function is continuous periodic (f(−1) = f(1)) but its derivative is not (f ′(−1) 6= f ′(1))
so the decay rate is 1/n2.

6.1. Convergence proof: easy case [extra]. This result provides a simple proof of con-
vergence under stronger conditions than the convergence theorem of section 3.

Simple convergence theorem: if f ∈ L2[−π, π] and f ′, f ′′ are both continuous (as periodic
functions) then the Fourier series converges uniformly to f , i.e.

max
x∈[−π,π]

|f(x)− SN(x)| → 0 as N →∞.

Proof. (Sketch) By the bounds on the coefficients, |an| and |bn| are bounded by C/n2 for
some constant C. We can then estimate

|SN(x)− f(x)| =

∣∣∣∣∣
∞∑

n=N+1

(an cosnx+ bn sinnx)

∣∣∣∣∣ ≤ C

∞∑
n=N+1

1

n2
.

But we know from calculus that
∞∑

n=N+1

1

n2
<

∫ ∞
N

1

x2
dx =

1

N
.

It follows that for all x ∈ [−π, π],

|SN(x)− f(x)| ≤ C

N
.

Thus the maximum error is C/N which goes to zero as N →∞. �
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7. Extra: Gibbs’ phenomenon, details

Let’s look at again the Fourier series for the square wave fsq and triangle wave ftr from
the previous examples:

fsq(x) =
4

π

∞∑
n=1

1

2n− 1
sin((2n− 1)πx).

ftr(x) =
1

2
− 4

π2

∞∑
n=1

1

(2n− 1)2
cos((2n− 1)πx).

For the triangle wave, we know from the convergence theorems that the partial sums converge
uniformly to f . Fix a point x; then notice that the absolute value of the sum is bounded by

4

π2

∞∑
n=1

1

(2n− 1)2
<∞.

So the coefficients decrease like 1/n2, which is fast enough that it doesn’t matter what the
values of the cosines are. On the other hand, for the square wave, the coefficients only
decrease like 1/n, and we know that

∞∑
n=1

1

2n− 1
=∞.

Thus for the partial sums to converge to the square wave, there must be some cancellation
due to the sines to have convergence, e.g. something like

∞∑
n=1

(−1)n

2n− 1

which is convergent. But it is possible for the sines to ‘align’ so that the terms in the partial
sum don’t cancel, and instead accumulate - which will lead to oscillations that never go away.

We can be more precise about the mysterious 9% with a little work: we find the location of
the peak closest to the discontinuity and compute its height. Consider Gibb’s phenomenon
at x = 0 for ssq(x). The partial sum

SN(x) =
4

π

N∑
n=1

1

2n− 1
sin((2n− 1)πx)

can be shown to have a critical point at x = π/2N (a point close to x = 0; this is the location
of the largest ‘peak’ of the oscillation) and

SN(π/2N) =
4

π

N∑
n=1

1

2n− 1
sin(

(2n− 1)π

2N
).

Up to a constant, this sum is an approximation to the integral of F (x) = sin x/x over [0, π]:∫ π

0

F (x) dx ≈ π

N

N∑
n=1

F (
(2n− 1)π

2N
).
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(The integral is the area under the curve; estimate using rectangles of width π/N with height
equal to the value of F at the midpoint). Precisely, we have

SN(π/2N) =
2

π

π

N

N∑
n=1

1

(2n− 1)π/(2N)
sin(

(2n− 1)π

2N
) ≈ 2

π

∫ π

0

sinx

x
dx ≈ 1.18

which is 9% times the jump height (which is 2 for fsq) above the correct value of 1. As
N →∞, this overshoot converges to the above value.
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