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Topics covered

• Linear systems (homogeneous)
◦ Existence/uniqueness for linear systems
◦ Basis for solutions, linear independence
◦ Linear constant-coefficient (LCC) systems in R2

◦ Second-order ODEs as systems
◦ (The Wronskian and fundamental matrix)

1. Linear systems of ODEs

A linear system of first-order ODEs in Rn (here, ‘linear system’ for short) for a
vector-valued function x(t) has the form

x′ = A(t)x + f(t) (1.1)

where f : R→ Rn and A(t) : R→ Rn×n (i.e. A(t) is an n× n matrix at each t).1 Note that
the system is of the form L[x] = f for the linear operator

L[x] := x′ − A(t)x. (1.2)

Existence/uniqueness theorem: To discuss briefly, the existence theorem can be ex-
tended to show that

a unique solutions exists where the coefficients A(t) and f(t) are continuous.

For simplicity, we omit the issue of the domain in this section. Results said or implied
to hold ‘for all t’ will hold in the interval I where the A and f are continuous. Also, we
assume the hypotheses of the theorem always hold.

We saw earlier that solutions to a homogeneous first-order linear ODE form a vector space
of dimension one. Let us now do the same for a homogeneous linear system of ODEs

x′ = A(t)x, x : R→ Rn. (1.3)

One key property is the principle of superposition, which says that

x1(t),x2(t) are solutions to (1.3) =⇒ any linear combination is also a solution.

This says that the set of solutions

{x(t) : x′ = A(t)x}
1Note that the most general linear function of a vector in Rn is x → Ax where A is an n× n matrix, so

it follows that the above is the most general form of a linear system.
1
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is a vector space. In practice, it lets us build solutions from linear combinations of others.

1.1. Linear independence. To find a basis, we must first define what it means for solutions
(which are functions) to be linearly independent. The motivation is this: if x1, · · ·xn are to
be a basis for solutions to (1.3), then the set of solutions to the IVP

x′ = A(t)x, x(t0) = x0

must be spanned by the basis solutions {xi}. That is, there must be a solution to the
equation

c1x1(t0) + · · ·+ cnxn(t0) = x0

for each x0, i.e. the vectors x1(t0), · · · ,xn(t0) must be linearly independent.

Lemma (Linear independence of solutions) A set of functions x1,x2, · · · ,xk is called
linearly independent if there is a value t0 such that

x1(t),x2(t), · · ·xk(t) are linearly independent vectors at t = t0. (1.4)

If the functions are solutions to to the homogeneous ODE (1.3) then this is equivalent to
the stronger condition that

x1(t),x2(t), · · ·xk(t) are linearly independent vectors for all t. (1.5)

The proof of the equivalence uses uniqueness to ‘transport’ the linear independence prop-
erty from t0 (where it is assumed) to all t (which we want to show).

Proof. Clearly one direction is trivial.

For the other, let x1(t), · · · ,xk(t) be solutions to x′ = A(t)x and suppose (1.4) holds. Pick
an arbitrary value t1.; we claim that the vectors x1(t1), · · · ,xk(t1) are linearly independent.
Suppose that

c1x1(t1) + · · · ckxk(t1) = 0

for some scalars c1, · · · , ck. We need to show that these scalars are all zero. Define

x(t) = c1x1(t) + · · ·+ ckxk(t).

Observe that x(t) solves the IVP

x′ = A(t)x, x(t1) = 0.

But the zero function also solves the IVP, so by uniqueness, x(t) ≡ 0 (i.e. is zero for all t).
But this means that

0 = x(t0) = c1x1(t0) + · · ·+ cnxk(t0).

At t0, the vectors in the above are linearly independent, so c1 = · · · = cn = 0. �

1.2. Solution space, basis. Now we can describe solutions to the homogeneous problem.

Main claim: The homogeneous solution space (the null space of L in (1.2)),

{x(t) : x′ = A(t)x}
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has dimension n. That is, we can find a set of n linearly independent ‘basis solutions’ xj(t)
that span the set of solutions, i.e. the general solution to the ODE is

x =
n∑
j=1

cjxj(t).

1.3. Basis for solutions: proof. We return to the promised proof that the basis of n
solutions exists. The proof uses the existence theorem to construct n solutions, then show
that their span is all solutions.

Structure of the solution space: There are n linearly independent solutions
x1(t), · · · ,xn(t) to the homogeneous ODE

x′(t) = A(t)x(t)

that form a basis for the solution space.

The proof is useful to see (optional, but worth understanding). It is an application of the
existence theorem to generate the n basis solutions.

Proof. First, we use linearly independent initial conditions and existence to produce linearly
independent solutions (the basis). Let v1, · · · ,vn be a basis for Rn and pick any t0. By the
existence theorem,

x′ = A(t)x, x(t0) = vi has a unique solution for i = 1, · · · , n.

By construction, the xi’s are linearly independent at t0 so they are linearly independent
functions by the lemma. This gives the proposed basis.

Now we show the xi’s are really a basis for solutions. Let x(t) be any solution to the
ODE; we wish to show it is a linear combination of the xi’s. To do so, pick a point t0 and
let x0 = x(t0). Then x(t) solves the initial value problem

x′ = A(t)x, x(t0) = x0. (1.6)

Since x1(t0), · · · ,xn(t0) are linearly independent vectors, there are scalars c1, · · · cn such that

c1x1(t0) + · · ·+ cnxn(t0) = x0.

Now combine them into a solution

y(t) := c1x1(t) + · · ·+ cnxn(t).

Both x(t) and y(t) solve the IVP (1.6). By uniqueness, they are equal as functions:

x(t) = y(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t) for all t

so x(t) is indeed in the span of the basis solutions. �
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So what is the basis? The proof demonstrates that the basis exists but does not construct
it. So how do we compute solutions? Short answer: In general, we can’t expect to have
explicit solutions. There are only special cases where the basis solutions can be found,
and a few tricks for obtaining solutions from other solutions.

2. Systems in R2 (planar systems)

The most important class of linear systems where the equation can be solved exactly is a
linear constant coefficient system (LCC system)

x′(t) = Ax(t).

where the matrix A is constant. To get the idea, we leave the general case in Rn to later
and first consider planar systems,

x′ = Ax, where A ∈ R2×2. (2.1)

It suffices to find two linearly independent solutions x1,x2. Once we do, solving an IVP

x′ = Ax, x(t0) = x0

is simple since we need only find constants c1, c2 such that

c1x1(t0) + c2x2(t0) = x0

which is just the linear system [
x1(t0) x2(t0)

] [c1
c2

]
= x0.

2.1. The basics: Obtaining the basis solutions is really just a linear algebra problem. Define

p(λ) = det(A− λI), (2.2)

the characteristic polynomial whose roots are the eigenvalues of A. It is easy to check
that if λ,v are an eigenvalue/vector pair for A then

x(t) = eλtv

is a solution to (2.1). If the eigenvectors of A form a basis {v1,v2} for R2 then

{eλ1tv1, eλ2tv2}
is a basis for solutions to (2.1). In particular, this works when p has two distinct roots λ1, λ2.

Example (distinct real eigenvalues): Consider the system

x′(t) =

[
0 4
1 0

]
x.

The eigenvalues/vectors are

λ1 = 2, v1 = (1, 1)T , λ2 = −2, v2 = (1,−1)T

Thus the general solution is

x(t) = c1e
2t(1, 1)T + c2e

−2t(1,−1)T .
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IVP: Now suppose we add an initial condition

x(0) = (2, 0)T .

Plugging t = 0 into the general solution at and using the IC gives the system[
1 1
1 −1

] [
c1
c2

]
=

[
2
0

]
which is solved to obtain c1 = c2 = 1. Component-wise, the solution is

x1(t) = e2t + e−2t, x2 = e2t − e−2t.
We see that x1, x2 →∞ as t→∞ and x1 →∞, x2 → −∞ as t→ −∞ (exponentially).

2.2. Complex roots: First, a useful result:

Real/imaginary parts: If a complex function z(t) solves the linear system

z′(t) = A(t)z(t)

and A(t) is real-valued, then the real and imaginary parts of z(t) are also solutions.

Short proof: write z(t) in terms of its real/imaginary parts,

z(t) = z1(t) + iz2(t)

and substitute into the ODE to get

z′1 + iz′2 = Az1 + iAz2.

The real/imaginary parts on either side are equal, so z′1 = Az1 and z′2 = Az2 for all t.

Now suppose the matrix has complex eigenvalues (p has complex roots)

λ = r + ωi, λ = r − ωi

(why are they conjugates?) with eigenvectors

v = v1 + iv2, v = v1 − iv2.

We want a basis for real solutions. The function

x(t) = eλtv

is a complex valued solution, but its real/imaginary parts will be two linearly independent
basis solutions. We get

eλtv =
(
erteiωt(v1 + iv2))

)
= ert(cosωtv1 − sinωtv2) + iert(cosωtv2 + sinωtv1),

so a basis for real solutions is

ert(cosωtv1 − sinωtv2), ert(cosωtv2 + sinωtv1).

Note that using the other eigenvalue λ yields the same results (check this!).

Remark: Of course if we wanted a basis for complex solutions, then {eλt, eλt} would be
fine, with no further work.
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Example (complex eigenvalues): The system

x′ = y, y′ = −x
is of the form x′ = Ax where x = (x, y) and

A =

[
0 1
−1 0

]
.

The eigenvalues/vectors are
λ = i v = (1, i)T

and −i and (1,−i)T . Write the first eigenvectors in terms of real/imaginary parts:

v = v1 + iv2, v1 = (1, 0), v2 = (0, 1).

One complex solution is
x(t) = eitv = eit(v1 + iv2).

Taking real/imaginary parts, we get two solutions:

x1 = cos te1 − sin te2 =

[
cos t
− sin t

]
,

x2 = sin te1 + cos te2 =

[
sin t
cos t

]
.

It is easy to verify they are linearly independent (plug in t = 0). The general solution is

x(t) = c1

[
cos t
− sin t

]
+ c2

[
sin t
cos t

]
.

Now suppose we want to solve the IVP

x(0) = x0, y(0) = y0

Since x(0) = (c1, c2)
T the linear system is easy to solve; c1 = x0 and c2 = y0. The solution

moves clockwise on a circle of radius
√
x20 + y20 starting at (x0, y0).

2.3. Repeated roots. Suppose now that there is a single repeated eigenvalue λ. There are
two cases:

i) There is a basis of eigenvectors v1,v2

ii) The eigenspace is deficient (only one eigenvectors v1)

Case (i) is easy: eλtv1 and eλtv2 are two linearly independent solutions.

For Case (ii), the procedure is given here and justified later. We have one solution,

x1(t) = eλtv1.

To get the second, find a vector v2 (a generalized eigenvector) such that

(A− λI)v2 = v1.

This vector satisfies

(A− λI)2v2 = 0, (A− λI)v2 6= 0.
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The second solution is then

x2(t) = eλt(v2 + t(A− λI)v2) = eλt(v2 + tv1)

which can be checked explicitly (we’ll see why this is the case later).

Example (repeated, but easy): The system

x′ =

[
1 0
0 1

]
x

has one eigenvalue λ = 1 and eigenvectors v1 = (1, 0), v2 = (0, 1). The solution is

x(t) = eλt(c1v1 + c2v2) = eλt(c1, c2)
T

which makes sense, of course since this is just the trivial system x′ = x, y′ = y.

Example (repeated eigenvalue): We solve

x′ = Ax, x(1) = (1, e2)T where A =

[
0 1
−4 4

]
.

The characteristic polynomial is p(λ) = λ2− 4λ+ 4 = (λ− 2)2 so there is one eigenvalue
λ = 2. The only eigenvector is v1 = (1, 2)T . Solve

(A− 2I)v2 = v1

to get
v2 = (−1,−1)T .

A solution basis is then
{e2tv1, e

2t(v2 + tv1)}.
To solve the IVP we need c1, c2 such that

c1e
2(1, 2) + c2e

2(0, 1) = (1, e2).

solving this linear system, we get c1 = 1, c2 = −1 so the solution is

x(t) = e2t
[
1
2

]
− e2t

[
−1 + t
−1 + 2t.

]
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3. Second order ODEs

Second-order ODEs (and higher order as well) can be converted to systems; the theory
developed in the previous section can be used to solve them as well. Consider the second
order ODE

y′′ + p(t)y′ + q(t)y = f(t) (3.1)

and associated IVP

y′′ + p(t)y′ + q(t)y = f(t), y(t0) = a, y′(t0) = b. (3.2)

This is a system for (y, y′). To convert to a system, define

x1 = y, x2 = y′.

Then (3.1) becomes the two-dimensional system

x′1 = x2, x′2 = f − qx1 − px2.
Letting x = (x1, x2), this is in the form

x′ = A(t)x + f(t)

where

A(t) =

[
0 1
−q(t) −p(t)

]
, f(t) =

[
0
f

]
.

The existence theorem, dimension of solution space and variation of parameters all apply;
to get back to y, simply take the first component of x(t). Thus the solutions to (3.1) form
a vector space with a basis of two solutions y1, y2. These solutions are linearly independent
in the sense of the associated system:

Definition (linear independence of solutions) Two solutions y1, y2 to the ODE (3.1)
are said to be ‘linearly independent’ if[

y1
y′1

]
,

[
y2
y′2

]
are linearly independent vectors for all t. (3.3)

This is equivalent to ‘at a point t0’ by the lemma from earlier.

The Wronskian is

W = y1y
′
2 − y′1y2

so to check that y1, y2 are linearly independent (i.e. a basis), we simply need to find a point
t0 such that W (t0) 6= 0. That is, if y1, y2 are solutions then

{y1, y2} are a basis ⇐⇒ W (t0) 6= 0 for some t0.

Of course, it is then true that W (t) 6= 0 for all t.

In general, we define linear independence of functions as follows:

Definition (linear independence of functions): Two functions y1, y2 are called linearly
independent if

c1y1 + c2y2 = 0 =⇒ c1 = c2 = 0.
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It turns out that two solutions are linearly independent in the sense of (3.3) if and only
if they are linearly independent functions. This requires proof, however (which we defer to
the more general case later). It is not true that the two definitions are equivalent if y1, y2
are not solutions to the ODE (see homework for examples).

3.1. Constant coefficient case. Here we solve

ay′′ + by′ + cy = 0. (3.4)

As a system, the matrix is A =

[
0 1
−c/a −b/a

]
which has characteristic polynomial

p(λ) = aλ2 + bλ+ c.

It is important to note that this equation inherits all the theory for the associated system.
However, because of the nice structure, we can say more (and solve the equation more easily).

Let L be the linear operator for this ODE. For any λ,

L[eλt] = aλ2eλt + bλeλt + ceλt = p(λ)eλt.

We call eλt an eigenfunction of L with eigenvalue p(λ). In particular,

eλt is a solution iff p(λ) = 0.

The basis solutions depend on the roots of p(λ). Note that in all cases, we must check the
solutions form a basis via the Wronskian.

3.2. Solution procedure. The process of solving second-order ODEs is the same as for
planar systems, but a bit easier in the repeated roots case (plus, no eigenvectors to worry
about). The case work is the same, since it deals with the same eigenvalues.

Real roots: If p has distinct real roots then

{eλ1t, eλ2t}

form a basis.
Complex roots: If the eigenvalues are complex, then λ = r ± ωi. Taking real/imaginary

parts of eλt gives the basis solutions

ert sinωt, ert cosωt

which is much easier than for systems because we are working with scalar functions.
Repeated roots: If there is a single eigenvalue λ, then the basis is

eλt, teλt.

There are a number of ways to derive this (see homework). One way is to use the
solution for the system,

x = eλt(v2 + tv1)

and then take the first component.
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Some examples:
Oscillation: The equation

y′′ + ω2y = 0, ω ∈ R
has characteristic polynomial

λ2 + ω2

with roots ±ωi. A complex basis is then e±iωt. Taking real and imaginary parts, we get
the rela basis sinωt, cosωt so

y = c1 sinωt+ c2 cosωt.

The solution oscillates with frequency ω. This equation describes a simple harmonic
oscillator - the most fundamental of systems that oscillate.

Repeated root: Consider the IVP

4y′′ − 4y′ + y = 0, y(0) = 1, y′(0) = 3/2.

The characteristic polynomial is p(λ) = (2λ − 1)2 so two linearly independent solutions
are et/2 and tet/2. The general solution is

y = (c1t+ c2)e
t/2.

Plugging in y(0) = 1 we get c2 = 1; then y′(0) = 3/2 gives c1 = 1.

4. Loose ends: some theory and definitions

4.1. Useful basis-related definitions. When manipulating general solutions, there are a
few quantities that are useful to have.

Fundamental matrix: The basis is also called a fundamental set for the ODE. It will
also be useful to define the fundamental matrix

Φ(t) =
[
x1 x2 · · · xn

]
which is just the matrix whose columns are the basis solutions. Note that in our construction,
the initial conditions for the basis solutions are the columns of Φ(t0). Typically, they are
chosen so Φ(t0) = In, in which case

x′ = A(t)x, x(t0) = x0 =⇒ x(t) = Φ(t)x0.

Wronskian: The Wronskian W (t) of the ODE is defined as

W (t) = det(Φ(t)) = det(
[
x1 x2 · · · xn

]
).

From linear algebra we know that

x1(t),x2(t), · · ·xn(t) are linearly independent at t ⇐⇒ W (t) 6= 0.

So in terms of W , the linear independence lemma states that

W (t0) 6= 0 =⇒ W (t) 6= 0 for all t .

The Wronskian gives a succinct ’test’ for linear independence (compute W (t) at one point).
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