
MATH 356 LECTURE NOTES
INTRO TO (QUALITATIVE) DYNAMICS

PHASE PLANES IN 2D: LCC CASE

J. WONG (FALL 2019)

Topics covered

• Autonomous equations in 2d (general)
◦ Introduction; definitions
◦ The phase plane

• LCC systems in 2d
◦ Categorization of equilibria
◦ Saddles, nodes, spirals; sketching the phase plane
◦ Trace-determinant plane, degenerate cases

1. Planar autonomous systems: definitions

We now increase the dimension by 1 and study the planar (2D) system

x′ = f(x, y), y′ = g(x, y).

This is an autonomous first-order system in R2 in the form

x′ = F (x) (1)

where F : R2 → R2 (given by F = (f, g)) and x = (x, y).

Equilibria: As before, a point x∗ is an equilibrium point (or fixed point) if

F (x∗) = 0.

This is true if and only if x(t) = x∗ is a constant solution.

Phase plane: The phase plane is the diagram showing solutions on (x, y) plane. So-
lutions (t, x(t), y(t)) are projected onto the (x, y) plane, so solutions move in the plane as t
changes. Solution curves follow the vector field (x′, y′) (or F). As an example, for the system

x′ =

[
0 1
−1 0

]
x,

the solution curves are circles centered at the origin (Figure 1), with a single equilibrium
point at (0, 0). The solutions themselves rotate clockwise along the solution curve.

Orbits: A solution curve in the phase plane starting at (x0, y0) is called an orbit (the
orbit of that point) or a trajectory of the system (or solution curve or solution). An
orbit that forms a closed curve is called a closed orbit.
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Nullclines: The sets where x′ = 0 and y′ = 0 are called the x- and y- nullclines. So-
lution curves must cross the x-nullcline in the y-direction and vice versa. Plotting the vector
field on the nullclines helps to see where solutions can go.

Moreover, as shown in Figure 1, the nullclines split the phase plane into regions where x′ and
y′ have certain signs, since x′ and y′ can only change sign by crossing a nullcline. Labeling
the regions with directions (up/down/left/right) helps to guide sketches and analysis.

Figure 1. Left: Nullclines (y-nullcline in red) and regions where x′, y′ have
a given sign for x′ = y, y′ = −x. Right: Some solution curves (circles).

2. Linear planar systems

We shall now analyze the phase plane in detail for

x′ = Ax

where A is a constant 2× 2 matrix.

Notation for this section: The system, in scalar form, looks like

x′ = a11x+ a12y, y′ = a21x+ a22y

with x = (x, y). We will switch freely between system and scalar notation. Assume here that
A is invertible (see HW for the other cases).

The exact solutions can be used to give an exhaustive characterization of the types of
phase planes that can arise. Since A is invertible, there is a unique equilibrium point at
(0, 0); we will classify the equilibria in terms of the eigenvalues of A.

2.1. Stable node. Let

A =

[
−3 1
1 −3

]
.

The eigenvalues/vectors are λ1 = −4 and λ1 = −2 with

v1 =

[
1
1

]
, v2 =

[
1
−1

]
.

The solution is
x = c1e

−2tv1 + c2e
−4tv2.
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All solutions converge to (0, 0). Note that v1 is the ‘slow’ direction and v2 is the ’fast’
direction (decreases faster as t→∞ and increases faster as t→ −∞). As →∞, we have

x ≈ c2e
−2tv1.

That is, for large t, all solutions tend to become parallel to v1. Similarly, as t→ −∞,
x ≈ c1e

−4tv2

so solutions will tend to be parallel to v2. Here is a picture:

The black dashed lines are solutions (that all converge to the origin). This type of equilib-
rium is called a stable node, where all solution curves converge to (0, 0) and the eigenvalues
are real. One term is dominant in each limit t → ∞ and t → −∞, and the direction of
the solution in each limit is determined by the eigenvectors. The opposite case is called an
unstable node (same picture, solutions just go the other way along the solution curves).

Asymptotes: of the lines x = y and x = −y separated by the origin are solution curves
(corresponding to initial conditions with c2 = 0 and c1 = 0, respectively). These curves are
special because they are simply pieces of lines in the phase plane.

Note on sketching: A more precise picture could be drawn by also sketching in the
nullclines y = 3x (for x′ = 0) and x = 3y (for y′ = 0). The eigenvectors are critical for the
sketch; the nullclines just help get the right shape in-between.

2.2. Saddle node. An equilibrium can have both stable and unstable components. Consider

x′ = y, y = x, A =

[
0 1
1 0

]
.

The x and y nullclines are y = 0 and x = 0, which will be useful in drawing the phase plane.
The eigenvalues are λ1 = 1 and λ2 = −1 with

v1 =

[
1
1

]
, v2 =

[
1
−1

]
.

The solution is
x = c1e

tv1 + c2e
−tv2.

Observe that x = c1e
tv1 is a solution; the solution curve lies on the line through the origin

in the direction v1. Solutions on this line move away from the origin along ±v1. This line
is called the ’unstable manifold’ (to be revisited); it is analogous to a phase line with an
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unstable point.

Another (linearly independent) solution is x = c2e
tv2. The situation is the same but solu-

tions instead converge to the origin. This is called the ’stable manifold’.

The vector field on the nullclines (black arrows), the lines along v1,v2 through the origin
and some solutions are shown below.

For other initial conditions, the same analysis as the previous case applies:

x ≈ c1e
tv1 as t→∞, x ≈ c2e

−tv2 as t→ −∞.

But now, in either case, x is diverging. So, if we follow the solution forwards, it will tend
towards the unstable manifold, diverging to ∞, and if we follow it backwards, it will tend
towards the stable manifold, also diverging.

Note that only solutions on the stable manifold (the line y = −x) will actually converge
to the origin. All others will get deflected and end up diverging along the asymptote y = x.

Additional note: The solution curves are just hyperbolas with asymptotes at y = ±x.
This makes sense since

dy

dx
=
dy/dt

dx/dt
= x/y

which is a separable equation whose solutions are x2 − y2 = C. This type of equilibrium,
with one unstable and one stable direction, is called a saddle node.

2.3. Center. Revisit the equation x′ = Ax where

A =

[
0 1
−1 0

]
.

In component form, this is x′ = y and y′ = −x. The solutions satisfy x2 + y2 = C since

d

dt

(
x(t)2 + y(t)2

)
= 2xx′ + 2yy′ = 2xy + 2y(−x) = 0.

So the solution curves are circles, and the solutions rotate around the circle. Indeed, the
eigenvalues are λ± i and the eigenvectors are v = e1 + e2i so

x(t) = c1(cos te1 − sin te2) + c2(sin te1 + cos te2).
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Here e1 = (1, 0)T and e2 = (0, 1)T . One solution (c2 = 0) is

x = c1 cos t, y = −c1 sin t

which is just clockwise rotation around the origin (radius c1). This is enough to generate all
the solution curves (all the other solutions with c2 6= 0 be the same, just shifted in t).

Such an equilibrium point is called a center: solutions rotate around but do not converge
to (0, 0). Note that we can figure out the direction by testing one point. At x = (1, 0), the
vector field is

Ax =

[
0
−1

]
which points down, so the solution must go clockwise. Plotting the nullclines and the vector
field on the nullclines shows the rotation as well.

A messier example: Centers do not have to be circles. Consider

A =

[
−1 −1
5 1

]
.

which has eigenvalues λ = ±2i. The eigenvectors are v1 ± v2i where

v1 =

[
−1
1

]
, v2 =

[
0
2

]
.

Note that the complex eigenvectors can be scaled by a complex number, so v1 and v2 are
not unique (see comment at the end of the example). A complex solution is

x = e3it(v1 + v2i).

Taking real/imaginary parts we get

x = c1(cos 2tv1 − sin 2tv2) + c2(sin 2tv1 + cos 2tv2).

Grouping by the eigenvectors,

x = (c1 cos 2t+ c2 sin 2t)v1 + (−c1 sin 2t+ c2 cos 2t)v2.

Setting c2 = 0 (like the previous case, we don’t need the c2 terms to draw the solution curves)
we get solutions

x = c1 cos 2tv1 − c1 sin 2tv2,

which are ellipses. The vectors v1 and v2 do not tell us too much about the solution curves
because they are not orthogonal (they are not the major/minor axes of the ellipse).
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The direction of rotation is easy to find, however: just test a point. For instance, when
x = (1, 0) we have Ax = (−1, 5) so the rotation is counter-clockwise. The tilt of the ellipse
can be estimated in the sketch using the x and y nullclines,

y = −x/2 and y = −5x.

Through this relatively simple analysis, we can get a good but not perfect picture of the
shape of the ellipse. Optional note: In general, nullclines and ellipse axes are not related.
With much more work, we can pick v1 and v2 (the real/imaginary parts of the eigenvector)
to be orthogonal, in which case they will be the directions of the major/minor axes.

2.4. Spiral. If the λ’s are complex with a real part, solutions will also grow or decay. Let

A =

[
−1 −2
10 3

]
.

which has eigenvalues λ = 1± 4i and eigenvectors are v1 ± v2i where

v1 =

[
−1
1

]
, v2 =

[
0
2

]
.

Taking real/imaginary parts of a solution (as in the previous case):

x = c1e
t(cos 4tv1 − sin 4tv2) + c2e

t(sin 4tv1 + cos 4tv2).

Thus solutions spiral inwards. The spiral is the most difficult case to draw by hand. Again,
checking the vector field on some axis (e.g. at (0, 1)) tells us the direction is counterclockwise.
The nullclines y = −x/2 and y = −10x/3 give some indication of the shape of the spiral.

This equilibrium point is called a unstable spiral because it spirals outward.

2.5. Degenerate cases: Detailed after the next section.
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Figure 2. The ‘trace-determinant’ plane characterizing equilibria for the
LCC system (2).

3. Phase diagram

Now we can map out what type of equilibrium appears given a system

x′ = Ax, A =

[
a b
c d

]
. (2)

The components a, b, c, d are not convenient to work with. Instead, recall that the trace
tr(A) of a square matrix is the sum of its main diagonal elements. Define

τ = tr(A) = a+ d, D = det(A) = ad− bc.

The characteristic polynomial is

det(A− λI) = (a− λ)(d− λ)− bc = λ2 − τλ+D.

Thus the eigenvalues are

λ =
τ ±
√
τ 2 − 4D

2
. (3)

The values of (τ,D) therefore determine the equilibrium type. We illustrate this by plotting
a ‘phase diagram’, marking in the (τ,D) plane the set of (τ,D) corresponding to each case.

The main features of the are shown below. The parabola τ 2 = 4D separates cases with
complex roots (spirals, centers) from those without (everything else).

• If D < 0 then the eigenvalues are real with opposite signs (saddle node).

• If τ 2 < 4D then the λ’s are complex with a real part (a spiral; unstable if τ > 0 and
stable if τ < 0).

• If τ = 0 and D > 0 then the λ’s are purely imaginary (a center)

• If D > 0 and τ 2 > 4D: λ’s are real with the same sign (a node; stable if τ > 0)

Checking these main cases in detail is left to you (one example is shown below). Some
degenerate cases are left out, which lie on the boundary between types (see next section).
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Example (characterizing spirals): For example, to identify unstable spirals, we need
eigenvalues that are complex with a positive real part. Note that, from (3),

λ is complex ⇐⇒ τ 2 < 4D.

If λ is complex then

λ =
τ

2
± i

2

√
4D − τ 2

so Re(λ) > 0 if and only if τ > 0. Thus unstable spirals lie above τ = 0 and below

τ =
√

4D on the trace-determinant plane (as depicted on the diagram).

3.1. Degenerate cases. There are several degenerate cases to consider. They lie on the
boundary between regions on the trace-determinant plane. A brief treatment:

Star node: λ is repeated, but has a two LI eigenvectors v1,v2. In this case the solution is

y(t) = eλt(c1v1 + c2v2).

Note that for any vector v = c1v1 + c2v2, we have Av = λv, so A = λI (a multiple of the
identity). Thus star nodes are exactly the (uninteresting) systems

x′ = λx, y′ = λy.

Star nodes lie on the boundary τ 2 = 4D between nodes and spirals. They are not quite
‘twisted’ like a spiral, and do not quite have two distinct fast/slow directions like a node (all
directions are equally fast).

Line of equilibria: λ1 = 0 and λ2 6= 0. This is the case where the equilibrium point
is not unique, since the solution is

y(t) = c1v1 + c2e
λtv2

There is a line of equilibria at c1v1 (for any c1). Solutions not on v1 either converge along v2

(λ < 0) towards the line or diverge. Note that no equilibrium point is asymptotically stable,
since nearby points on the v1 line stay fixed.

• Degenerate node: See homework; the interesting degenerate case. One eigenvalue
λ, repeated with one eigenvector v1. In this case, the solution is

y(t) = eλt(c1(v2 + tv1) + c2v2)

where v2 is the generalized eigenvector.
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