
Math 353 Lecture Notes
Orthogonal bases, the heat equation

J. Wong (Fall 2020)

Topics covered

• Linear algebra (review in Rn)

• Deriving the heat equation

• A first PDE example: the heat equation

• Function spaces: introduction to L2

1 Linear algebra: orthogonal bases in Rn

Here a review of linear algebra introduces the framework that will be used to solve differen-
tial equations. The structure we review for vectors and matrices in the space Rn to solve
linear systems Ax = b will be adapted to functions and linear operators.

The familiar setting for linear algebra is the space Rn. To review:

Definitions (linear algebra in Rn):

• The space of n-dimensional real vectors: Rn = {x = (x1, x2, · · · , xn), xj ∈ R}

• We can define an inner product (the ‘dot product’) on this space by

〈x,y〉 := xTy =
n∑
j=1

xjyj.

• This also defines a norm (the Euclidean or ‘`2 norm’)

‖x‖2 :=
( n∑
j=1

|xj|2
)1/2

=
√
〈x,x〉.

• Two vectors x,y are called orthogonal if

〈x,y〉 = 0.

Geometrically: two vectors are orthogonal if they are perpendicular.
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Some properties of the inner product and norm are worth highlighting:

• Norm property: A vector x has norm zero if and only if it is the zero vector:

‖x‖ = 0 ⇐⇒ x ≡ 0.

• Linearity: The inner product is linear in each argument; for the first:

〈c1u + c2v,y〉 = c1〈u,y〉+ c2〈v,y〉 for all c1, c2 ∈ R and u,v ∈ Rn.

and for the second argument,

〈x, c1u + c2v〉 = c1〈x,u〉+ c2〈x,v〉 for all c1, c2 ∈ R and u,v ∈ Rn.

Operators: A linear operator L on Rn is a function from Rn to Rn (vectors to vectors)
such that

L(c1x + c2y) = c1Lx + c2Ly for all c1, c2 ∈ R and x,y ∈ Rn

i.e. such that L is linear.

In Rn, linear operators are equivalent to n× n matrices:

L is a linear operator ⇐⇒ there is an n× n matrix A s.t. Lx = Ax.

1.1 Orthogonal bases

Recall that a set {φ1, · · · , φn} is a basis for Rn if it (minimally) spans Rn:

every v ∈ Rn has the form v =
n∑
j=1

cjφj for unique coefficients cj.

A set of vectors {φj} is said to be orthogonal if

〈φj, φk〉 = 0 for j 6= k.

and, of course, an orthogonal basis is a basis that is orthogonal. Why are orthogonal
bases so useful? The idea is that they separate the space into ’independent’ parts that do
not interact.

Let φ1, · · · , φn be an orthogonal basis for Rn. We know that for any x ∈ Rn,

x =
n∑
i=1

ciφi for coefficients ci.
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To obtain the j-th coefficient cj, we take the dot product 〈·, φj〉 with both sides. By orthog-
onality, all but one of the terms in the sum will cancel:

〈x, φj〉 =
n∑
i=1

ci〈φi, φj〉

=
n∑
i 6=j

ci〈φi, φj〉+ cj〈φj, φj〉

=
∑
i 6=j

ci · 0 + cj〈φj, φj〉

=⇒ cj =
〈x, φj〉
〈φj, φj〉

.

Due to orthogonality, the equation for each cj is independent of the others.

What we are doing here is projecting x onto its j-th component. The map

x→ 〈x, φj〉
〈φj, φj〉

extracts the coefficient cj of the j-th component.

Observe, crucially, that this projection turns the n-dimensional system we need to solve
for the c’s into n one-dimensional systems (just scalar equations)!

In the example above, the basis vectors are (±1, 1) and

x = c1φ1 + c2φ2 =⇒ c1 =
〈x, φ1〉
〈φ1, φ1〉

=
1

12 + 12
=

1

2
, c2 =

〈x, φ2〉
〈φ2, φ2〉

=
1

2
.
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1.2 Orthogonal bases of eigenvectors

Now, we get to the essential part - further improving the properties of the orthogonal basis.
An eigenvalue and associated eigenvector of a matrix A is a (possibly complex) number

λ and vector φ ∈ Rn such that
Aφ = λφ.

Given a matrix A, there is a particularly nice orthogonal basis, at least in a special case.
Recall that a matrix is symmetric if AT = A and an important theorem:

Theorem (spectral theorem; matrices): Let A be an n×n real symmetric matrix. Then

• The eigenvalues λ1, · · · , λn of A are real and distinct

• The corresponding eigenvectors v1, · · · ,vn are an orthogonal basis for Rn.

From here, we can interpret a matrix A as a linear operator that scales components
of its input along each eigenvector. For instance, consider

A =

[
0 2
2 0

]
, λ1 = 2, v1 =

[
1
1

]
, λ2 = −2 v2 =

[
1
−1

]
Then the operator

x→ Ax

scales the v1 component by 2 and the v2 component by −2. Critically, applying the operator
to an eigenvector yields a vector in the same direction.

It follows from this property that an orthogonal basis of eigenvectors ‘diagonalizes’ systems

Ax = b. (1)

That is, in the eigenvector basis, the linear system ‘decouples’ into n independent (scalar)
equations that are trivial to solve.

Let v1, · · · ,vn be the eigenvectors of the symmetric matrix A. We solve the system (1)
by projecting onto the j-th eigenvector as follows:
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First, decompose x and y into its components in the eigenvector basis:

x =
n∑
j=1

xjvj, y =
n∑
j=1

yjvj.

Now plug into the equation and use the fact that vj is an eigenvector (Avj = λjvj):

Ax = y

A

(
n∑
j=1

xjvj

)
=

n∑
j=1

yjvj

n∑
j=1

λjxjvj =
n∑
j=1

yjvj

When A is applied, each component stays in the same direction due to the eigenvector
property, so the components stay independent of each other. Now use the fact that {vj} is
a basis to conclude that each component is equal:

n∑
j=1

(λjxj − yj)vj = 0 =⇒ xj =
yj
λj

for j = 1, · · · , n.

Useful argument: Note that if v1, · · · ,vn is any basis and two vectors are equal, then each
component is equal on its own:

n∑
j=1

ajvj =
n∑
j=1

bjvj =⇒ aj = bj for all j.

This is because 0 is uniquely represented by 0 =
∑n

j=1 0 · vj, so

n∑
j=1

(aj − bj)vj = 0 =⇒ aj − bj = 0 for all j.

The structure exploited here will also appear in solving linear partial differential equations
- and in fact, the calculations are similar (with basis vectors replaced by basis functions).
To get there, of course, we must identify the right analogies to vectors, operators, bases etc.
for functions, which will take some work.
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2 Some context: PDEs from conservation laws

Rather than pull the equation out of thin air, let’s see how PDEs arise naturally out of
fundamental models1. To do so, we introduce the concept of a conservation law, which
is a way of stating that for an amount of stuff in a region, the change in the amount is
due to stuff entering/exiting the region or being created/destroyed. For simplicity, assume
the stuff is ‘heat’ - but this argument is quite general (e.g. could be particle concentration,
momentum, energy, density of fish, etc.)

Consider a cylindrical tube with cross section A running along the x-direction and u(x, t)
the temperature at position x and time t. The amount of heat in a section of the tube for x
in some interval [a, b] is ∫ b

a

u(x, t)Adx.

Let us further suppose there is a source g(x, t) that is the rate at which u is created or
destroyed at position x along the tube. For instance, heat could leak out of the pipe at a
rate g(x, t) if the pipe is poorly insulated.

Define F (x, t) to be the flux of heat: the rate at which heat flows through the cross section
at x, with units of heat per (area)(time). Thus φAdt is the amount of heat passing through
the cross section in a time dt (with sign determining the direction). We have

∂

∂t

(∫ b

a

u(x, t)Adx

)
︸ ︷︷ ︸

change in heat

= AF (a, t)− AF (b, t)︸ ︷︷ ︸
heat entering the section from the ends

+

∫ b

a

g(x, t)Adx︸ ︷︷ ︸
heat created/lost due to source

.

Cancel out A and move the derivative on the LHS inside the integral, leading to∫ b

a

ut(x, t) dx = F (a, t)− F (b, t) +

∫ b

a

g(x, t) dx,

which is a mathematical description of the conservation of heat.

1Adapted from Applied Partial Differential Equations, J. David Logan
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Now write the F terms in an integral using the Fundamental Theorem of Calculus and
collect all the terms to get∫ b

a

[ut(x, t) + Fx(x, t)− g(x, t)] dx = 0.

The above equation must hold for all intervals [a, b]. It follows that the integrand must be
equal to zero, leading to the ‘differential form’ of the conservation law,

ut + Fx = g(x, t).

Many models in the sciences arise from this basic conservation argument. The next step is
to determine the flux φ as as function of u and x (and the source).

Deriving the heat equation

If u is temperature, then the flux can be modeled by Fourier’s law

φ = −αux

where α is a constant (the thermal diffusivity, with units of m2/s). This simple law states
that the the flux of heat is towards cooler areas, and the rate is proportional not to the
amount of heat but to the gradient in temperature, i.e. the heat will flow faster if there is a
large difference (e.g. an ice cube melting in a fridge vs. outside on a hot day).

Thus if there is no external source of heat, then u satisfies the heat equation

ut = αuxx.

More generally, if u is any quantity whose flux is proportional to minus the gradient of u,
then u will also satisfy the above. Such a process is called a diffusion process and the
equation is then referred to as a diffusion equation.
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3 Where are we going with all this?

4 Motivating example: Heat conduction in a metal bar

A metal bar with length L = π is initially heated to a temperature of u0(x). The temper-
ature distribution in the bar is u(x, t). At the ends, it is exposed to air; the temperature
outside is constant, so we require that u = 0 at the endpoints of the bar.

Over time, we expect the heat to diffuse or be lost to the environment until the temperature
of the bar is in equilibrium with the air (u→ 0).

Physicist Joseph Fourier, around 1800, studied this problem and in doing so drew attention
to a novel technique that has since become one of the cornerstones of applied mathematics.
The approach outlined below hints at some of the deep structure we will uncover.

The temperature is modeled by the heat equation:

∂u

∂t
=
∂2u

∂x2
, t > 0 and x ∈ (0, π).

Since the temperature is fixed at both ends, we have

u(0, t) = 0, u(π, t) = 0 for all t.

Lastly, the initial heat distribution is t = 0 is

u(x, 0) = f(x)

where f(x) is some positive function that is zero at 0 and π. The temperature should decrease
as heat leaks out of the bar through the ends; eventually it all dissipates. In summary, we
seek a function u(x, t) defined on [0, π] satisfying

∂u

∂t
=
∂2u

∂x2
t > 0 and x ∈ (0, π), (2a)

u(0, t) = u(π, t) = 0 for t ≥ 0 (2b)

u(x, 0) = u0(x). (2c)

First, guess a solution of the form
u = e−λtφ(x). (3)
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Substituting into the PDE (2a), we find that

−λφ(x) = φ′′(x).

Now substitute into the boundary conditions (2b) (note that e−λt cancels out here) to get

φ(0) = 0, φ(π) = 0.

It follows that (3), our guess for u, satisfies the PDE (2a) and the boundary conditions (2b)
if the function g(x) solves the boundary value problem

φ′′(x) + λφ(x) = 0, φ(0) = 0, φ(π) = 0. (4)

Though not an initial value problem, we can solve it by obtaining the general solution first.
One can check that there are no solutions for λ ≤ 0. When λ > 0 the solution has the form

φ = c1 sin(µx) + c2 cos(µx), µ :=
√
λ.

Imposing the conditions at 0 and 1 we find

φ(0) = 0 =⇒ φ = c1 sin(µx)

φ(1) = 0 =⇒ sin(µπ) = 0.

The second equation tells us that when µ is an integer a solution exists. This gives an infinite
sequence of solutions to (4):

λn = n2, φn(x) = sin(nx), n = 1, 2, 3, · · ·

It follows that the function
ane

−n2tφn(x) (5)

is a solution to the heat conduction problem except the initial condition. This ‘one term’
solution solves the problem with initial data

u0(x) = an sin(nx).

Now the crucial question: what happens when the initial data is not a sine? For systems
of ODEs, we found a basis of n solutions whose span gave all solutions. Similarly, we must
seek a solution that is an infinite linear combination of the one term solutions (5):

u(x, t) =
∞∑
n=1

ane
−n2tφn(x).

Then u(x, t) solves the original problem (2) if the coefficients an satisfy

u0(x) =
∞∑
n=1

anφn(x). (6)
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Essentially, this is a representation of the function u0(x) in terms of the ‘basis’ functions
{sin(nx) : n = 1, 2, 3, · · · }. In fact, this set has the remarkable orthogonality property∫ π

0

φm(x)φn(x) dx =

∫ π

0

sin(mx) sin(nx) dx = 0, m 6= n. (7)

To solve for the coefficient am, we can multiply (6) by sin(mx) and integrate:∫ π

0

u0(x) sin(mx) dx =

∫ π

0

∞∑
n=1

an sin(mx) sin(nx) dx.

Now move the integral inside the sum (ignore rigor for now!). By the orthogonality property
(7), only one of the terms in the sum will be non-zero:∫ π

0

u0(x) sin(mx) dx =

∫ π

0

∞∑
n=1

an sin(mx) sin(nx) dx

=
∞∑
n=1

an

∫ π

0

sin(mx) sin(nx) dx

=

(∑
n6=m

an · 0

)
+ am

∫ π

0

sin(mx) sin(mx) dx

= am

∫ π

0

sin2(mx) dx.

Miraculously, the infinite sum has been reduced to a simple equation for am:

am =

∫ π
0
u0(x) sin(mx) dx∫ π
0

sin2(mx) dx
. (8)

This process works for allm, so the solution to the heat conduction problem (5) with arbitrary
initial condition u0(x) is

u(x, t) =
∞∑
n=1

ane
−n2t sin(nx)

with the coefficients given by the formula (8). The informal calculations here suggest a
deeper structure, which will be the focus of our study: the properties and construction of
this convenient basis; the consequences of this infinite series form and how it is used to
reduce solving PDEs to simpler problems.
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4.1 Where are we going with all this?

Ignoring all the rigorous details, let’s identify the general idea. This example is intended to
motivate some of the key questions. Consider a partial differential equation like

∂u

∂t
=
∂2u

∂x2
, x ∈ (a, b), t > 0

for a function u(x, t) and define the linear operator

Lu =
∂2u

∂x2
.

Suppose L has eigenfunctions φj that form an orthogonal basis. Then we can express the
solution in terms of this basis:

u(x, t) =
∞∑
j=1

cj(t)φj(x)

for coefficients cj(t). Plug into the PDE:
∞∑
j=1

c′j(t)φj(x) =
∞∑
j=1

λjcj(t)φj(x)

from which it (should) follow that
c′j = λjcj.

The orthogonal basis of eigenfunctions allows us to convert the (complicated) PDE into a
set of (simple) one dimensional ODEs for the coefficients.

The Big Picture: The sketch above and the contrast between linear algebra in Rn and
functions in L2 raises some key questions that will motivate the topics to come. There are
some equivalences, and many questions left to answer:

vectors in Rn( or Cn) ⇐⇒ functions in ???

linear systems Ax = b ⇐⇒ linear DEs?

〈x,y〉 =
n∑
i=1

xiyi ⇐⇒ 〈f, g〉 =

∫ b

a

f(x)g(x) dx

n× n matrices ⇐⇒ linear operators L (e.g. d2/dx2, · · · )

• What is the operator? We want an orthogonal basis of eigenvectors for some linear
operator L. This means identifying the right operator and understanding when it will
do what we want.

• Infinite dimensions? The basis for the function space is infinite dimensional - this
has consequences that make the story more complicated than linear systems in Rn.

• What are the eigenfunctions? We will need to study in detail how eigen-‘functions’
are different from eigenvalues (and some ways they are the same).
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5 Linear algebra: function spaces

The first step leading up to solving linear PDEs is to identify the right space of functions
and extend the idea of orthogonality from linear algebra in Rn to this space.

Consider real functions defined on an interval [a, b]. Define the inner product

〈f, g〉 =

∫ b

a

f(x)g(x) dx (9)

and call two functions f, g orthogonal on [a, b] if

〈f, g〉 = 0.

Analogous to the Euclidean norm for a vector x ∈ Rn,

‖x‖2 =
√
x21 + · · ·+ x2n = 〈x,x〉1/2

we define the L2 norm

‖f‖2 =

(∫ b

a

|f(x)|2 dx
)1/2

.

Definition (L2 spaces) Consider (real) funcftions defined on an interval [a, b]. The set

L2[a, b] = {f : [a, b]→ R such that ‖f‖2 <∞}

is called the space of L2 functions (pronounced ‘ell-two’), or sometimes ‘square-integrable’
functions. Equivalently, a function is in L2 if the integral of its square is finite,∫ b

a

|f(x)|2 dx <∞.

The space L2[a, b] is a vector space (linear combinations of functions in L2 are also in L2

and it has an inner product

〈f, g〉 =

∫ b

a

f(x)g(x) dx

which is well-defined for all f, g ∈ L2[a, b]. (we call this the ‘L2 inner product’).

The L2 norm gives us a way to measure distance between two functions. The expression

‖f − g‖22 =

∫ b

a

|f(x)− g(x)|2 dx (10)

is a sort of weighted measure of the area between the curves f(x) and g(x) on the inteval
[a, b]. This is analogous to the Euclidean distance for vectors:

‖x− y‖2 = (x1 − y1)2 + · · ·+ (xn − yn)2
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which is the actual distance in Rn between the points at x and y. The quantity (10) is
sometimes called the mean-square distance.

Warning (complex functions): All the definitions here are true only for real-valued
functions. For complex-valued functions, the inner product is instead

〈f, g〉 =

∫ b

a

f(x)g(x) dx

where g(x) is thet complex conjugate of g(x). Most of the theory is the same, other than the
occasional conjugate.

5.1 Some examples

For functions f and g, notions like orthogonality depend on the underlying space where
the functions live. For instance, consider

f(x) = 1, g(x) = cos x.

Regarded as functions in L2[0, π], the two functions are orthogonal:

〈f, g〉 =

∫ π

0

cosx dx = sinx
∣∣∣π
0

= 0.

However, as functions in L2[0, π/2] the two functions are not orthogonal, since then

〈f, g〉 =

∫ π/2

0

cosx dx = 1.

The functions are orthogonal on [0, π] but not on [0, π/2]; the domain matters because the
definition of the inner product is different for each.

Another example: Consider the space L2[−1, 1]. We have that

〈1, x〉 =

∫ 1

−1
x dx = 0

so the constant function 1 and x are orthogonal on [−1, 1]. However,

〈1, x2〉 =

∫ 1

−1
x2 dx =

2

3
,

so 1 and x2 are not orthogonal. On the other hand, for g(x) = x2 − 1/3,

〈1, g〉 =

∫ 1

−1
(x2 − 1/3) dx =

2

3
− 2

3
= 0.

This means that the set
{1, x, x2 − 1/3}

is an orthogonal set in L2[−1, 1], whereas {1, x, x2} is not. The process, incidentally, can be
continued to generate an orthogonal sequence of polynomials.
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