
Math 353 Lecture Notes
Laplace Transform: Fundamentals

Fall 2020

Topics covered

• Introduction to the Laplace transform

• Theory and definitions

◦ Domain and range of L
◦ Inverse transform

◦ Fundamental properties

− linearity

− transform of derivatives

• Use in practice

◦ Standard transforms

◦ A few transform rules

◦ Using L to solve constant-coefficient, linear IVPs

◦ Some basic examples

1 The idea

We turn our attention now to transform methods, which will provide not just a tool for
obtaining solutions, but a framework for understanding the structure of linear ODEs.

The idea is to define a transform operator L on functions,

L : origin space→ transformed space

such that the ODE in the transformed space is much easier to solve. We will consider an
integral transform, which takes the form

L[f(t)] =

∫
D

K(s, t)f(t) dt
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where D is some domain (usually (−∞,∞) or (0,∞)) and K(s, t) is a function called the
kernel of the transform. One of the two most important integral transforms1 is the Laplace
transform L, which is defined according to the formula

L[f(t)] = F (s) =

∫ ∞
0

e−stf(t) dt, (1)

i.e. L takes a function f(t) as an input and outputs the function F (s) as defined above.

They key properties of the Laplace transform (which we’ll look at in detail) are:

• L is a linear operator

• L turns differentiation in t into multiplication by s (almost):

L[f ′] = sL[f ]− f(0).

• L−1 exists and both L and L−1 can be computed in practice

Because of these properties, given an ODE

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = f(t)

we can:

1) Use the transform to convert this into an algebraic equation for Y = L[y].

2) solve for Y in the s-space

3) Apply L−1 to return to the t-space and get y(t)

Typically, the equations in (2) are much easier to work with than the ODE. The s-space will
tell us information about the solution that would be difficult to obtain directly.

1the other is the Fourier transform; we’ll see a version of it later.
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motivating example For example, let’s solve

0 = y′ − y

Let Y (s) = L[y(t)] be the Laplace transform of the solution. Applying L to the equation,
we obtain the transformed equation

L[0] = L[y′]− L[y] = sY − y(0)− Y.

Since L[0] = 0, we get
0 = (s− 1)Y − y(0),

which is trivial to solve! The transformed solution to the ODE is then

Y (s) =
y(0)

s− 1
.

Here is the point at which we have to do actual work - the price of transforming the ODE
is that we have to undo the transformation to get the desired solution, y(t). In this case,
it is easy to show that L[et] = 1/(s− 1), from which we can conclude that

y(t) = y(0)et.

2 The laplace transform

Now we go through the basic theory. The treatment here is not be completely rigorous; some
technical details are omitted in favor of getting to the key points.

Definition: The Laplace transform F (s) of a function f(t) is

L[f(t)] = F (s) =

∫ ∞
0

e−stf(t) dt, (2)

defined for all s such that the integral converges.

2.1 Domain/range of the Laplace transform

We want to find a set of functions for which (2) is defined for large enough s. For (2) to be
defined, we need that:

• f is integrable and defined for [0,∞)

• f grows more slowly than the e−st term
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Hereafter, we shall assume that f is defined on the domain [0,∞) unless otherwise noted.

Definitions: A function f(t) is piecewise continuous if it is continuous except for an
isolated set of jump discontinuities.2

A function f(t) is of exponential type if there are constants a and k such that

|f(t)| ≤ Keat. (3)

Note: Technically, this need only hold as t→∞, but the distinction is not important here.

These two properties are enough to guarantee L is defined:

Theorem: If f is piecewise continuous and of exponential type as in (3) then

L[f(t)] = F (s) is defined for all s > a.

Informally: If f grows slower than est then F (s) is defined, so if f grows slower than eat for
some a then F (s) is defined for all s > a.

Proof. (Sketch.) We need to show that
∫∞
0

e−stf(t) dt is finite when s > a. Use the bound
on f to estimate ∣∣∣∣∫ ∞

0

e−stf(t) dt

∣∣∣∣ ≤ ∫ ∞
0

Ke−(s−a)t dt =
K

s− a

which is finite so long as s > a. It follows (omitting technical details) that the integral exists
and is finite, so L is defined for s > a.

Note on the theorem and proof: The condition (3) can be replaced with the weaker
condition that |f(t)| ≤ Keat for t > M for some M (that is, f is eventually bounded by
an exponential). It does not matter what f does in a finite interval, which allows the
assumptions to be relaxed a bit.

For the proof, there is a problem since
∫∞
0

e−stf(t) dt is not known to exist in the
first place. To be correct, we must use a comparison test for integrals: If there is an ‘upper
bound’ function h(t) such that

|g(t)| ≤ h(t) and

∫ ∞
0

h(t) dt <∞

then
∫∞
0

g(t) dt exists (and is finite).
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3 Fundamental properties

The most basic property is also the most essential, so it gets a box:

Linearity: The Laplace transform L is a linear operator.

Proof: Suppose f1, f2 are functions for which L is defined and c1, c2 ∈ R. Then

L[c1f1 + c2f2] =

∫ ∞
0

e−st(c1f1(t) + c2f2(t)) dt

= c1

∫ ∞
0

e−stf1(t) dt + c2

∫ ∞
0

e−stf2(t) dt

= c1L[f1] + c2L[f2].

Note that if L[f1] and L[f2] are defined for s > a then the same is true of the linear
combination c1f1 + c2f2.

The other key property is that it acts in a nice way on derivatives:

Theorem: Suppose f is of exponential type (i.e. (3) holds) and f ′ is piecewise continuous.
Then L[f ′(t)] exists on the same domain as L[f ] and

L[f ′(t)] = sL[f(t)]− f(0). (4)

Conceptually, it is essential to understand to that the above means

derivatives in the original space ⇐⇒ multiplication in the transformed space

up to the extra terms. The proof is straightforward and worth knowing. For simplicity,
assume that f is continuous. Let a be the constant in (3); that is,

|f(t)| ≤ Keat.

To get the formula, integrate by parts (carefully):∫ ∞
0

e−stf ′(t) dt = lim
b→∞

e−btf(t)− f(0)− lim
b→∞

∫ b

0

(−se−st)f(t) dt

= −f(0) + s lim
b→∞

∫ b

0

e−stf(t) dt

= −f(0) + sL[f(t)].

The first limit is zero by the bound on f since

|e−stf(t)| ≤ Ke−(s−a)t → 0 as t→∞.
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For the second limit, we can take b → ∞ since we have already established the improper
integral converges in the proof that L[f ] exists.

This result can be iterated to find the Laplace transform of higher order derivatives. For
example,

L[f ′′(t)] = sL[f ′(t)]− f ′(0))

= s(sL[f(t)]− f(0))− f ′(0)

= s2L[f(t)]− sf(0)− f ′(0)

and so on. Thus an n-th derivative in the original space correspond to multiplications by sn

in the transformed space (up to some polynomial in s). To be precise, we have:

Theorem (Laplace transform of derivatives): If f (n) is piecewise continuous and f and
all its derivatives up to n− 1 are of exponential type then

L[f (n)(t)] = snL[f(t)]− sn−1f(0)− sn−2f ′(0)− · · · − sf (n−2)(0)− f (n−1)(0). (5)

As before, if the transforms of f, f ′, · · · , f (n−1) are defined for s > a then the transform
of f (n) is also defined for s > a.

3.1 Inversion

The Laplace transform has an inverse; for any reasonable nice function F (s) there is a unique
f such that L[f ] = F.

Inverse of the Laplace transform: If F (s) is defined for s > a then there is a unique
function f(t) such that

L[f(t)] = F (s).

In this case we write
f(t) = L−1[F (s)].

Unfortunately, the details (and definition of L−1 in general) require some complex analysis
and are beyond the scope of this course. The inverse is notoriously difficult to work with in
general. In practice, one typically computes L−1[F (s)] by recognizing F (s) as comprised of
known transforms. In the next section, we derive some ’standard’ transforms; these functions
(along with some other known results) will be the things whose inverses are known.
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4 Inverses and transforms

In this section we compute some common transforms and show strategies for computing
the inverse transform of a function F (s). This discussion will involve deriving some new
properties of L and will make use of a few results from calculus.

4.1 Easy cases (with a bit of algebra)

Constant function: For the constant function f(t) = 1,

L[1] =

∫ ∞
0

e−st dt =
1

s
, defined for s > 0.

Exponential:

L[eat] =

∫ ∞
0

e−(s−a)t dt =
1

s− a
, s > a.

Sine/cosine: The formula above applies for complex exponentials. In particular,

L[e(a+bi)t] =
1

s− (a + bi)
=

s− a + bi

(s− a)2 + b2
.

In particular, because L is linear we can take real and imaginary parts to get

L[eat sin bt] =
b

(s− a)2 + b2
, L[eat cos bt] =

s− a

(s− a)2 + b2
.

Polynomial: Let n ≥ 1 be an integer. Then, using integration by parts, we can find the
transform of tn in terms of the transform for tn−1. The result (left as an exercise) is that

L[tn] =
n!

sn+1
.

Non-integer case: The transform for tp when p is a real number is not as nice. Define

Γ(p) =

∫ ∞
0

e−ttp−1 dt, p > 0

(the ‘Gamma function’). Note that Γ(n) = (n− 1)! if n is an integer. If p > −1 then

L[tp] =
Γ(p + 1)

sp+1
.
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5 Transform rules/equivalences

Not every F (s) is going to be immediately recognizable as a standard transform. Often, we
need to break it into manageable parts. If you see something like

s2 + 3

(s− 1)2(2s− 2)2

you should think: how can this be turned into a sum of easy-to-invert functions? There are
a number of rules to break expressions down.

Many of the rules are really correspondence between operations in the original space and
the transform space (like differentiation in t being multiplication by s). They can be used
to compute L or L−1, but are also useful for analysis.

The list will grow considerably as the discussion progresses!

Linearity: The inverse transform L−1 is linear. Thus sums can be inverted term by term
and constant factors can be moved in/out of the transform.

L−1[cF (s)] = cL−1[F (s)],

L−1[F1(s) + · · ·+ Fn(s)] = L−1[F1(s)] + · · ·+ L−1[Fn(s)].

Derivatives in s: A dual property to the rule for f ′(t). A derivative in the transformed
space corresponds to multiplication by (−t) in the original space:

(−t)nf(t) −⇀↽− F (n)(s)

For example,

L[tet] = − d

ds

(
1

s− 1

)
=

1

(s− 1)2
.

This could also be used in reverse to find L−1[1/(s− 1)2].

Partial fractions: See separate notes for a review. We break up rational expressions
into recognizable parts that can be inverted directly, e.g.

F (s) =
1

(s− 1)(s− 2)2
=

a

s− 1
+

b

s− 2
+

c

(s− 2)2
.

The first three are the most commonly used (and mandatory for most problems). There are
a few others to be derived later.
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6 Solving ODEs with the Laplace transform

We are now ready to use the Laplace transform to solve linear, constant coefficient initial
value problems, that is equations of the form

any
(n) + an−1y

(n−1) + · · ·+ a1y
′ + a0y = f

where the ai’s are constants.

Remark: Example 2 (below) shows that the transform has no problem with inhomoge-
neous term, so long as we can transform/inverse transform them. Any order is also fine (see
Example 3), but it makes the calculations much more involved.

The procedure is as follows:

1) Apply L to the ODE to obtain an equation for Y (s) = L[y(t)]. Use the initial conditions
to evaluate the y(0), y′(0) etc. terms in (5). (easy; always the same process)

2) Solve the equation for Y (s) (easy)

3) Decompose Y (s) into a sum of functions that are easy to invert. (can be tricky depend-
ing on the form of Y (s); it can be a mess).

4) Calculate each term of L−1[Y (s)] (mostly straightforward if Step 3 was done well)

It is worth noting, and we will see later, that the end goal is not always to get a formula
for y(t). If we are interested in understanding the behavior of solutions, the transform space
can be the right place to do analysis.
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Example 1 (homogeneous): A simple initial value problem.

y′′ − 2y′ + y = 0, y(0) = 1, y′(0) = 0.

Let Y (s) = L[y(t)]. Take the transform of the ODE, then apply the initial conditions:

0 = s2Y − sy(0)− y′(0)− 2(sY − y(0)) + Y

= s2Y − s− 2sY + 2 + Y

= (s2 − 2s + 1)Y − s + 2

= (s− 1)2Y − s + 2.

The solution in the transformed space is therefore

Y (s) =
s− 2

(s− 1)2
.

Now we write (this is an example of partial fractions)

Y (s) =
s− 2

(s− 1)2
=

1

s− 1
− 1

(s− 1)2
.

The first term is L[et]; for the second, see below. Inverting, we get

L−1[Y (s)] = L−1[ 1

s− 1
] + L−1[ 1

(s− 1)2
]

= et + (−t)et

= (1− t)et.

For the second term: Use the derivative-in-s rule, observing that

− 1

(s− 1)2
=

d

ds

(
1

s− 1

)
. (6)

We know that d/ds corresponds to multiplication by −t, i.e.

L[(−t)nf(t)] = F (n)(s)

so we can use this to take the inverse transform of (6) to get

L−1[1/(s− 1)2] = (−t)et.

Alternate method: Use the translation in s rule,

L[ectf(t)] = F (s− c)

and the fact that L[t] = 1/s2 to get

L−1[ 1

(s− 1)2
] = etcL−1[

1

s2
] = tet.

10



Example 2 (inhomogeneous): An initial value problem with a forcing term.

y′′ + y = sinωt, y(0) = 0, y′(0) = 1, ω 6= ±1.

Take the transform (using the standard result for sine ):

s2Y − sy(0)− y′(0) + Y =
ω

s2 + ω2
.

Apply the initial condition and obtain

(s2 + 1)Y = 1 +
ω

s2 + ω2
.

so we get

Y =
1

s2 + 1
+

ω

(s2 + 1)(s2 + ω2)
.

Now use partial fractions:

1

(s2 + 1)(s2 + ω2)
=

A

s2 + 1
+

B

s2 + ω2

which gives
1 = As2 + Aω2 + Bs2 + B

so A + B = 0 and Aω2 + B = 1, solved by A = 1/(ω2 − 1) and B = −1/(ω2 − 1). Thus Y ,
after using partial fractions, is

Y =
1

s2 + 1
+

ω

(ω2 − 1)

(
1

s2 + 1
− 1

s2 + ω2

)
.

Now we recognize that

L[sin t] =
1

s2 + 1
, L[sinωt] =

ω

s2 + ω2
,

and use the known transforms to invert each term of Y :

Y =
ω2 + ω − 1

ω2 − 1
sin t− 1

ω2 − 1
sinωt.
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Example 3 (higher order ODE): A fourth order IVP. The method works for any
linear constant-coefficient ODE (of any order). We solve

y(4) − 5y′′ + 4y = 0, y(0) = 1, y′(0) = 0, y′′(0) = 3, y′′′(0) = 0.

Take the Laplace transform and use the initial conditions:

(s4Y − s3 − 3s)− 5(s2Y − s) + 4Y = 0.

Solve for Y to obtain

Y (s) =
s3 − 2s

s4 − 5s2 + 1
=

s3 − 2s

(s− 1)(s + 1)(s− 2)(s + 2)
.

Notice that the denominator just the characteristic polynomial of the ODE (which will be
true in general). We can invert Y (s) by using partial fractions to write it in the form

Y (s) =
1/6

s− 1
+

1/6

s + 1
+

1/3

s− 2
+

1/3

s + 2
.

(The calculation here is tedious but straightforward). Each term can be inverted using
L[eat] = 1/(s− a) to obtain the solution

y(t) =
1

6
(et + e−t) +

1

3
(e2t + e−2t).
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