
Math 353 Lecture Notes
Second Order Linear ODEs: fundamentals

Fall 2020

Topics covered

• Fundamentals

◦ Review of vector spaces

◦ Homogeneous 2nd order ODEs: structure

◦ Connection to linear systems in R2

◦ Linear independence of solutions and functions

◦ Testing linear independence (Wronskian)

• Solution procedures

◦ Linear constant coefficient (LCC) ODEs

◦ Detail: choosing a nice basis

◦ Extension to Higher-order LCC ODEs

◦ Example: a damped spring

1 Interlude: linear algebra review

1.1 A quick summary

To setup, let’s review the analogous theory you know from linear algebra. The example for
vectors in R2 is listed in the next section, but is meant to be in parallel to this one.

A (real) vector space V is a set of ‘vectors’ v with the property that linear combina-
tions stay in V , i.e.

v1, v2 ∈ V, c1, c2 scalars =⇒ c1v1 + c2v2 ∈ V

where a ‘scalar’ is a real number.1

The standard example is Rn, the space of n-dimensional vectors (x1, · · · , xn).

1A ‘complex’ vector space uses comple x numbers for scalars, which may be useful later.
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The span of some vectors is the set of all linear combinations:

span(x1, · · · , xk) = {c1x1 + · · ·+ ckxk for scalars c1, · · · , ck}.
A set of vectors is linearly independent if none of the vectors are in the span of the others.
This means, critically, that there are a ‘minimal’ set that spans in that we can’t remove any
without reducing the span. Precisely,

x1, · · · , xk are linearly independent if and only if...

c1x1 + · · ·+ ckxk = 0 implies cj = 0 for all j.

To rephrase the last line: there is no non-trivial way to make zero as a linear combination
of the set of vectors x1, · · ·xk.
Or, again: there is no way to write any of the xj’s as a linear combination of the others.

A basis for a vector space V is a linearly independent set of vectors that spans the space.
Linear independence ensures all the vectors in the basis are needed.
The dimension of V is the size of a basis.

Critically, this means that we can represent any vector in V as a linear combination of
the basis vectors.

A linear operator on a vector space is a function L that takes vectors to vectors and
is linear, which means that

L[c1v1 + c2v2] = c1L[v1] + c2L[v2], for scalars c1, c2 and vectors v1, v2.

Here L[v] denotes L applied to v (you usually just see Lv for linear operators).

You can break this up into ‘scaling’ and ‘additivity’ properties if you like:

L[cv] = cL[v], L[v + w] = L[v] + L[w].

Why is this useful? Suppose we want to understand a vector space V and an operator L.
A strategy is to first find a basis φ1, · · · , φn. Then

v = c1φ1 + · · ·+ cnφn

for any vector v. Applying L and using linearity, we get

L[v] = c1L[φ1] + · · ·+ cnL[φn].

Thus, to understand the function L[v], we only need to know

• A basis φ1, · · · , φn

• what happens when L is applied to each basis element

That reduces ‘know what L does on the n-dimensional V ’ to ‘know what L does on n things’.

Similarly, if we want to understand some vector space V , it is enough to find a basis and then
look at all linear combinations of that basis. That is, we need only get n linearly independent
elements and the rest is easy.
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1.2 Example: vectors in R2

Here we review the concepts above for vectors in R2 and R3.

Linear independence: In R2, two vectors v, w are linearly independent if they are not
in the same direction, i.e. if

v 6= cw for any c.

An example of linearly independent vectors:

v1 =

[
1
2

]
, v2 =

[
1
3

]
Recall: a matrix is invertible if and only if its columns are linearly independent.

This means that to check linear independence, we can look at the matrix whose columns are
those vectors:

v1, v2 linearly independent ⇐⇒ [v1|v2] is invertible.

For example, with v1, v2 above,

[v1 | v2] =

[
1 2
1 3

]
, det = 3− 2 = 1 6= 0

which verifies linear independence. (We’ll use this shortly for DEs).

Note that in R3, the ‘multiples of each other’ rule is not enough, since one vector could
be a linear combination of the other two, e.g. the set

v1 =

1
0
0

 , v2 =

0
1
0

 , v3 =

2
2
0


is not linearly independent because v3 = 2v1 + 2v2.

Basis: In R2, the above means any two vectors that are not multiples form a basis... e.g.

v1 =

[
1
2

]
, v2 =

[
1
3

]
as before. Any vector (x, y) can be written in terms of the basis as[

x
y

]
= c1

[
1
2

]
+ c2

[
1
3

]
.

As noted before, the matrix whose columns are v1, v2 is invertible, which makes sense since[
x
y

]
= c1

[
1
2

]
+ c2

[
1
3

]
=

[
1 1
2 3

] [
c1
c2

]
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has a solution for any (x, y) only if the matrix can be inverted.

Linear operators: In Rn, linear operators are the functions

L[v] = Av, A = n× n matrix.

(Technically, an operator can send v to a different space, where A could be m × n instead,
but that’s not needed here).

Linearity is easily checked directly from the definition of matrix multiplication.

1.3 More on linear algebra in Rn

Eigenvalues: An essential concept (which we’ll use extensively in the course) is the
eigenvalue/eigenvector pair.

Given a matrix A, we say v is an eigenvector and λ is an eigenvalue if

Av = λv.

Geomtrically, this says:

• A applied to v stays in the direction of v

• A scales the vector v by λ.

Both properties are useful in theory as welll. Suppose we have an n × n matrix A with n
eigenvectors v1, · · · vn that are linearly independent and eigenvalues λ!, · · ·λn.

This is a basis of eigenvectors for Rn. That means that any vector x can be written

x = c1v1 + · · · cnvn.

Now, applying A to this vector, we see that it leaves each term in the same direction (c1v1
still in the v1 direction, etc.) and

Ax = c1λ1v1 + · · ·+ cnλnvn.

Thus, the application of A to x can be described as

scale the j-th component of x (in the eigenvector basis) by λj.

This reduces Ax to n simple operations. While useful, of course, in Rn, we will find the
analogous notion for differential equations to provide even more significant benefits.

One last remark: An important fact is that

eigenvectors of distinct eigenvalues are linearly independent.
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In particular, if A is an n×n matrix and it has n distinct eigenvalues, then its eigenvectors
are autonomatically a basis for Rn.;.

Linear systems and null spaces: For a linear system

Ax = b

we know that a unique solution exists if and only if A is invertible.

If A is not invertible, then it has a non-trivial null space

N = {x : Ax = 0}.

In this case, any ‘particular’ solution x0 to Ax = b cannot be unique, since

Ax0 = b =⇒ x = x0 + y solves Ax = b for any y ∈ N.

That is, we can add any solution to Ay = 0 to our particular solution. For instance, take[
1 2
1 2

]
x =

[
3
3

]
.

A particular solution and the null space are

xp =

[
1
1

]
, null space = {y :

[
1 2
1 2

]
y = 0} = span(

[
2
−1

]
)

The set of solutions is then

x =

[
1
1

]
+ c

[
2
−1

]

2 First order linear ODEs (in terms of vector spaces)

To gain some intuition, let’s look at linear first order ODEs

y′ + p(t)y = g(t).

We will need the definitions that the ODE is...

• homogeneous if g(t) = 0

• inhomogeneous If g(t) is non-zero

This equation has the form

L[y] = q, L[y] := y′ + p(t)y.

We happen to have the full solution. Let φ(t) the the integrating factor (what is it?). Then

y(t) =
C

φ(t)
+

1

φ(t)

∫ t

a

φ(s)g(s) d ds
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The solution can be written as
y(t) = Cy1(t) + yp(t)

where

y1(t) =
1

φ(t)
, yp =

1

φ(t)

∫ t

t0

φ(s)g(s) ds.

Now observe that y1 and yp solve

L[y1] = 0, L[yp] = g.

The associated homogeneous problem for this operator is

L[y] = 0.

We see, then, that the general form for solutions to

y′ + p(t)y = g(t)

has the form
y = homogeneous solution + particular solution

where the particular solution is one solution to the original problem and the homoge-
neous solution is the general solution to the homogeneous problem

y′ + p(t)y = 0.

Notably, the set of homogeneous solutions is a vector space (with dimension 1):

V = {y : L[y] = 0} = {cy1 : c ∈ R} = span({y1}). (1)

This vector space structure will be crucial once the dimension becomes bigger than one.

Why this structure? For the non-homogeneous problem,

L[y] = g(t), (2)

we have a solution yp (with no free constant!). How does this connect to the homogeneous
case? The idea is that the single function yp ‘takes care of’ the right hand side, and the rest
of the solution is just the homogeneous part (which we just solved for).

Formally, observe that if y is any other solution to (2) then

L[y − yp] = L[y]− L[yp] = g − g = 0.

Thus y − yp ∈ V (the set of homogeneous solutions (1)), which means that

y = cy1 + yp.

This is the general solution to (2). Note that the trick of subtracting off a particular solution
to get rid of g really only required that L was linear (not important that it was also first
order). The principle applies quite generally and will be used often in our study of DEs.
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3 Second order linear ODEs: context

3.1 A first example

Before getting to the general theory, let’s explore the structure with an example. Consider
the second order linear ODE (for y(t))

y′′ + y′ − 2y = 0

Note that the operator here is Ly = y′′ + y′ − 2y, and the ODE is Ly = 0.

Let’s search for solutions by the method of guessing. We know that ert is a simple solu-
tion, so guess a solution of the form

y(t) = ert.

Plugging this into the ODE we find that

ert is a soln. ⇐⇒ r2ert + rert − 2ert = 0

which then simplifies to
r2 + r − 2 = 0.

Notice that L[ert] = (r2 + r− 2)ert, so the exponential is an ‘eigenfunction’ (analogous to an
eigenvector) for this operator, which is why the ert can cancel.

The equation for r has solutions r = −1 and r = 2, so we conclude

e−t, e2t are solutions.

But L is linear, so if L sends both solutions to zero, any linear combination will also be sent
to zero by L. Thus,

y(t) = c1e
−t + c2e

2t is a solution for any scalars c1, c2. (3)

It’s not obvious at this point that we have found the general solution (it is!).

One clue is that since a first order ODE needs one initial condition (y(t0) = y0) to have
a unique solution, a second order ODE should need two, e.g.

y′′ + y′ − 2y = 0, y(0) = a, y′(0) = b.

Can this problem be solved given our solution? Plugging in, we get

a = c1 + c2, b = −c1 + 2c2

=⇒
[
a
b

]
=

[
1 1
−1 2

] [
c1
c2

]
which indeed has a solution for any (a, b) since the matrix is invertible. Thus, if our assertion
about ‘how many initial conditions are needed’ is true, the solution (3) must be the general
solution.

There are a number of hints to insights here - you can see structure here like a basis for
a 2d space, linear independence, linearity and so on. That is thr structure we will identify
in learning how to solve ODEs of this type.
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3.2 Systems of ODEs, briefly

While our focus is on second-order ODEs, this context willl be useful.
A first-order, linear, system in n-dimensions has the form

x′ = A(t)x + f(t) (4)

where x(t) (the unknown) and f (given) are functions from R to Rn and A(t) is an n × n
matrix-valued function (i.e. A(t) is a matrix for each t).

The ‘initial value problem’ specifies the vector x(t) at a time t0:

x′ = A(t)x + f(t), x(t0) = v.

Here is an example of such an IVP in two dimensions:{
x′1 = 2x1 + t2x2 + cos t

x′2 = sin(t)x1 + x2
x1(0) = 3, x2(0) = 7.

In matrix form (4), the system is[
x′1(t)
x′2(t)

]
=

[
2 t2

sin t 1

] [
x1(t)
x2(t)

]
+

[
cos t

0

]
,

[
x1(0)
x2(0)

]
=

[
3
7

]
The following version of the existence/uniqueness theorem is true:

Theorem (existence/uniqueness, linear systems) The initial value problem for

x′ = A(t)x + f , x(t0) = v

has a unique solution, defined in the interval where A(t) and f(t) are continuous.

Key point (2nd order ODEs are systems!): A second order ODE

y′′ + p(t)y′ + q(t)y = f(t) (O)

is really a first-order system in disguise. Let

x1 = y, x2 = y′.

That is, we now have an unknown vector-valued function (x1(t), x2(t)) = (y(t), y′(t)). Then

x′1 = x′2
x′2 = f(t)− p(t)x2 − q(t)x1

(S)

since x′1 = y′ = x2 and x′2 = y′′ = f(t)− p(t)y′ − q(t)y from the ODE.

But (S) is just a first-order system for (x1, x2) equivalent to the second-order ODE (O).
That is, (with the ⇐⇒ meaning equivalent to)

second order ODEs for y(t) ⇐⇒ first order systems for (y(t), y′(t))

Tis ‘system for (y, y′)’ idea will be a useful notion shortly.
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3.3 General theory for second-order linear ODEs

Now we consider the general2 second-order linear homogeneous ODE

y′′ + p(t)y′ + q(t)y = f(t) (5)

Defining the operator
Ly = y′′ + py′ + qy

the ODE can be written in the form
Ly = f.

From the previous section, identifying the ODE as a system for

x1 = y, x2 = y′

we would have an IVP
x′(t) = A(t)x + f(t), x(t)) = x0

for an initial vector x0. Translating back to the second order ODE, it follows that the IVP
should specify y and y′ at t0, so the right form of an IVP is

y′′ + p(t)y′ + q(t)y = f(t), y(t0) = a, y′(t0) = b. (6)

It follows that:

Theorem (existence/uniqueness, again) The second order, linear initial value problem

y′′ + p(t)y′ + q(t)y = f(t), y(t0) = a, y′(t0) = b

has a unique solution, defined where the coefficients are continuous functions of t.

The important idea here is that two conditions are required to get a unique solution
to a second order ODE.

As you may imagine, the pattern continues, with n conditions for an n-th order ODE.

2Note that one could also put a coefficient on y′′; it is just omitted for simplicity.
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4 Homogeneous problems, basis for solutions

Now let’s look just at the homogeneous problem

y′′ + p(t)y′ + q(t)y = 0 (H)

and let Ly = y′′ + p(t)y′ + q(t)y (the operator).

Our goal is to understand the set of all solutions,

V = {y : Ly = 0}

and to verify that it is a vector space of dimension two.

4.1 Superposition (why is it a vector space?)

First, observe that if y1 and y2 are solutions, then so is c1y1 + c2y2 for any scalars since

L(c1y1 + c2y2) = c1Ly1 + c2Ly2 = c1 · 0 + c2 · 0.

It follows that the set of solutions V really is a vector space.

This observation is a powerful idea that we’ll use often, so it gets a name:

Idea (superposition): If y1 and y2 are solutions to the linear homogeneous ODE (H)
and c1, c2 are scalars, then the linear combination (or ‘superposition’)

c1y1 + c2y2

is also a solution. That is, solutions can be scaled and added together to form new solutions.

This is called the principle of superposition.

4.2 Preliminaries for the basis (linear independence)

Before finding a basis, we need a notion of what it means to be ‘linearly independent’ for
functions.

For vectors, the useful linear combinations are spans of linearly independent vectors.

The question here is: what does it mean for solutions to an ODE to be linearly inde-
pendent?

The motivating example from earlier (subsection 3.1) gives us the idea.
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Consider the space of solutions to the homogeneous problem (H). Our goal is to be able to
solve initial value problems of the form

y′′ + p(t)y′ + q(t)y = 0, y(t0) = a, y′(t0) = b

for any initial conditions (a, b).

Suppose we have a solution y1(t). A solution y2(t) should be linearly independent if the
linear combinations

c1y1 + c2y2

provide us with more solutions that solve IVPs (not just the ones covered by y1).

From superposition, this is true if[
y1(t0)
y′1(t0)

]
,

[
y2(t0)
y′2(t0)

]
are linearly independent vectors for at least one t0. (LI1)

If true, we can combine the ICs for y1 and y2 to get any initial condition (a, b)..
Then by superposition, plus the existence theorem, we have constructed all the solutions.

On the other hand - what is the failure case? y1 and y2 will be linearly dependent if[
y1(t0)
y′1(t0)

]
,

[
y2(t0)
y′2(t0)

]
are linearly dependent for at one timet0.

That is, if at any time t0, these IC vectors are linearly dependent, then c1y1 + c2y2 does not
yield new solutions. This is the case since then[

y2(t0)
y′2(t0)

]
is in span(

[
y1(t0)
y′1(t0)

]
)

so we really only have solutions that start at multiples of (y1(t0), y
′
1(t0)) (so just cy1).

This means that y1 and y2 should be linearly independent only if[
y1(t0)
y′1(t0)

]
,

[
y2(t0)
y′2(t0)

]
are linearly independent at all times t0. (LI2)

to avoid this failure case.

The argument can be made rigorous to show these two definitions are actually equivalent.

Definition: Two solutions to the linear, homogeneous ODE (H) are said to be linearly
independent if (LI1) holds, or equivalently if the stronger statement (LI2) holds.

This means that for a pair of solutions, if the vectors (y, y′) are linearly independent
at one time, they are linearly independent at all times!
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Obviously, the at one time condition is the easier one to check in practice.

That is, we need only show linear independence of the vectors (y1, y
′
1) and (y2, y

′
2) at a single

point; then the lemma tells us these vectors are linearly independent at all t. Recalling
some linear algebra, (LI1) holds if and only if

det

[
y1(t0) y2(t0)
y′1(t0) y′2(t0)

]
6= 0.

This expression is called the Wronskian, defined to be

W (y1, y2)(t) = det

[
y1 y2
y′1 y′2

]
= y1y

′
2 − y′1y2.

Thus y1, y2 is a basis if and only if W is non-zero at some point:

{y1, y2} is a basis ⇐⇒ W (y1, y2)(t0) 6= 0 for at least one t0.

It follows from the lemma that

W (t0) 6= 0 at some t0 ⇐⇒ W (t) 6= 0 for all t.

The test is useful, but you should keep in mind that it comes from (LI1).

Example (checking linear independence, plus a bonus solution guess):

L[y] := t2y′′ − 2y = 0, t > 0.

By some inspired guesswork, let’s try a solution of the form y = tr. Substituting in, we
find that

L[tr] = (r2 − r − 2)tr.

Thus tr is a solution if and only if r = 2 or r = −1. We therefore have two solutions

y1 = t2, y2 = 1/t.

Obviously, y1 is not a multiple of y2, which establishes that they are a basis by (??). To
verify directly, we check linear independence of (y1, y

′
1) and (y2, y

′
2):[

y1 y2
y′1 y′2

]
=

[
t2 1/t
2t −1/t2

]
.

By the previous results, it suffices to check at a single point. Take t = 1; then

(1, 2), (1,−1) are linearly independent

so it follows that y1, y2 are a basis for solutions to Ly = 0.

The determinant (which is the Wronskian) at t is

W (t) = −3.

Note that W (1) = −3, which is what we used above. Indeed, it is true that W (t) 6= 0
everywhere, as it must be if it is non-zero at a point. It is, of course, much easier to show
that W (t0) 6= 0 for one t0 than to show that W 6= 0 for all t.
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4.3 Constructing the basis

We have now shown that the set of solutions to

y′′ + p(t)y′ + q(t)y = 0 (7)

is a vector space of dimension two, i.e.

{solutions to (7)} = span(y1, y2)

for a pair of basis solutions y1, y2. To show this, start with the fact that

y′′ + p(t)y′ + q(t)y = 0, y(t0) = a, y′(t0) = b

has a solution for any (a, b). We can choose any two LI sets of initial conditions and get two
LI solutions. For instance, let

y1 = solution to the ODE with y(t0) = 1, y′(t0) = 0,

y2 = solution to the ODE with y(t0) = 0, y′(t0) = 1

Then [
y1(t0) y2(t0)
y′1(t0) y′2(t0)

]
=

[
1 0
0 1

]
, W (t0) = det(· · · ) = 1

which confirms the solutions are linearly independent and form a basis for solutions (this is
also called a fundamental set).

It’s clear, then, that any solution to the ODE is a linear combination of these solutions,
since we need only combine them to match the values at t0

y(t) solves the ODE =⇒ y(t) = y(t0)y1(t) + y′(t0)y2(t).

Unfortunately, we don’t have a general method for finding such solutions - but if we can do
so, that solves the ODE and lets us solve any initial value problem.
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5 Constant-coefficient, second-order linear ODEs

If the coefficients are constant, then we do have a way to solve the ODE exactly. The pro-
cedure is fairly straightforward, but there are a few details that require care.

These ODEs are extremely common, so it is essential to know how to solve them and to
be able to efficiently compute the solutions!

We cosnider the linear, second order, homogeneous, constant coefficient ODE (take a
moment to recall what each words means in this long list!)

ay′′ + by′ + cy = 0. (C)

Assume also that the coefficients a, b, c are real numbers.
This type of ODE will be abbreviated as ‘LCC’ (Linear Constant Coefficient).

As before, let Ly = ay′′ + by′ + cy denote the associated operator.
By the previous discussion, it suffices to:

• Find two solutions

• Check that they are linearly independent

• Take linear combinations to get the general solution

5.1 Procedure

The procedure to find the two linearly independent solutions is listed below (examples listed
separately afterwards). Note that with these two solutions, we are done, as they span the
set of all solution to the ODE (C).

1) Find exponential solutions: Look for solutions of the form

y(t) = eλt.

Observe that (check this!)
L[eλt] = (aλ2 + bλ+ c)eλt

so it follows that
eλt is a solution ⇐⇒ 0 = aλ2 + bλ+ c

The function p(λ) = aλ2 + bλ+ c is called the characteristic polynomial.

Now let
λ1, λ2 = roots of the characteristic polynomial. (8)

There are two solutions eλ1t, eλ2t if they are distinct, and only one solution eλt if they are
equal. Then, to get the actual basis solutions...
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2) Construct the basis solutions: There are three cases to consider here.

i) Distinct real roots: If λ1 6= λ2 and both are real, then we have a pair of solutions

y1(t) = eλ1t, y2(t) = eλ2t.

You can check that they are linearly independent.

ii) Complex roots: Since a, b, c are real, the roots of the characteristic polynomial (8)
must be complex conjugates in the form

λ = r ± iω.

Step (1) does give us two exponential solutions, but they are complex:

e(r+iω)t, e(r−iω)t.

These are a perfectly fine basis for solutions, but would require allowing complex coef-
ficients, and ending up with all complex solutions :

y(t) = ert
(
z1e

iωt + z2e
−iωt) , z1, z2 ∈ C.

To get a real basis for real solutions, we use the fact that

y(t) is a solution =⇒ the real/imaginary parts are solutions.

(see homework for details - this relies on linearity and the real coefficients a, b, c).

It follows that each complex solution yields two real solutions. Taking the real/imagi-
nary parts of either one gives

y1 = Re(e(r+ωi)t) = ert cosωt, y2 = Im(e(r+ωit)) = ert sinωt

Again, you can check that these solutions are linearly independent.

iii) Repeated roots: This case is more trouble. We have only one exponential solution

y1 = eλt.

The rule here is to multiply by t to get a new solution. A second solution is

y2 = teλt.

You can check that (i) y2 really is a solution and (ii) y1, y2 are linearly independent. A
quick proof of the t rule is given below. The next set of notes also gives a way to show
the result (reduction of order).
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5.2 Some comments on the LCC procedure

Existence: The existence theorem guarantees that, since the coefficients a, b, c are all con-
tinuous in t, solutions must exist for all t.

This can be seen also by looking at the solutions. The functions that show up are:

eλt, eλt(sin t or cos t), teλt

are all well-defined for all t. Moreover, the type of behavior this ODE can display is quite
limited - it can only be linear combinations of a pair of the above.

Repeated roots case: Suppose r is the repeated root for

y′′ + by′ + cy = 0.

We know that, for any value λ,

L[eλt] = p(λ)eλt = (λ− r)2eλt

by factoring the characteristic polynomial. Differentiate in λ (not in t!) to get

∂

∂λ

(
L[eλt]

)
=

∂

∂λ

(
(λ− r)2eλt

)
=⇒ L[teλt] = 2(λ− r)eλt + t(λ− r)2eλt

since the λ partial derivative can be moved inside the L (why?).

Now plug in λ = b, and we find that

L[tebt] = 0 =⇒ tebt is a solution.

The repeated root preserves the evaluates-to-zero-at-b property of the RHS after taking a
derivative in λ, which lets us get a a new solution by taking

y2 =
∂

∂λ
(eλt).

Note that this trick only generalizes to higher order LCC ODEs (see subsection 5.4), but
otherwise isn’t useful - it’s specific to this repeated roots, LCC case.
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5.3 A series of examples

Examples accompanying the procedure, plus a few typical calculations and observations.

Example (i) - real roots: Solve

y′′ − 9y = 0, y(2) = 1, y′(2) = 0.

THe characteristic polynomial/roots are

p(λ) = λ2 − 9, λ = ±3.

The general solution to the ODE is then

y(t) = c1e
3t + c2e

−3t.

Plugging this into the initial caonditions we get

1 = c1e
6 + c2e

−6, 0 = 3c1e
6 − 3c2e

−6

which gives us c1e
6 = c2e

−6 = 1/2 and so

y(t) =
1

2
e−6e3t +

1

2
e6e−3t

=
1

2
e3(t−2) +

1

2
e−3(t−2).

Remark (translation is convenient!): The example hints at the fact that is is often
good to center the basis at the initial t. That is, write eλ(t−t0) or sin(ω(t− t0)) so that
they evaluate to nicer quantities (no e’s!) at t = t0.

We can do this because the LCC ODE is autonomous, so

y(t) is a solution =⇒ y(t− t0) is also a solution

i.e. translations in t of y(t) are also solutions.

In the example above, an ideal choice of basis is y1 = e3(t−2) and y2 = e−3(t−2), since
then y = c1y1 + c2y2 with

y(2) = 1 =⇒ c1 + c2 = 1, y′(2) = 0 =⇒ 3c1 − 3c2 = 0.
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Example (ii) - complex roots: The equation

y′′ + ω2y = 0, ω ∈ R

dscribes simple harmonic oscillators (e.g. a vibrating spring with no friction).

The characteristc polynomial and roots are

p(λ) = λ2 + ω2, λ = ±ωi,

The complex basis solutions are then e±iωt. Taking real and imaginary parts yields solutions
sin(ωt) and cos(ωt) so the real solution is

y(t) = c1 sinωt+ c2 cosωt.

The solution oscillates with frequency ω (with a fixed amplitude). This system is the sim-
plest autonomous ODE that has oscillating solutions.

Example (iii) - repeated roots): Consider the IVP

4y′′ − 4y′ + y = 0, y(0) = 1, y′(0) = 3/2.

The characteristic polynomial is p(λ) = (2λ− 1)2 so two linearly independent solutions are
et/2 and tet/2. The general solution is

y = (c1t+ c2)e
t/2.

Plugging in y(0) = 1 we get c2 = 1; then y′(0) = 3/2 gives c1 = 1.

Note that it’s easier here to solve for c2, c1 in succession.

Example (iv) - choice of basis: We solve the IVPs

(A): y′′ − 9y = 0, y(0) = 1, y′(0) = 0.

(B): y′′ − 9y = 0, y(0) = 0, y′(0) = 1.

From example (i), the general solution to the ODE can be written as

y(t) = c1e
3t + c2e

−3t.

Now for the IVP (A) , plugging in the ICs gives{
1 = c1 + c2,

0 = 3c1 − 3c2
=⇒

[
1
0

]
=

[
1 1
3 −3

] [
c1
c2

]
which is easily solved to get c1 = c2 = 1/2.
For (B), the equations are almost the same:{

0 = c1 + c2,

1 = 3c1 − 3c2
=⇒

[
0
1

]
=

[
1 1
3 −3

] [
c1
c2

]
18



so c1 = 1/2 and c2 = −1/2. Thus we have two solutions

ya =
1

2
(e3t + e−3t) = cosh(3t), yb =

1

2
(e3t − e−3t) = sinh(3t).

Now note that the initial conditions are (1, 0) and (0, 1). Thus

(ya, y
′
a) and (yb, y

′
b) are LI vectors at t = 0

(or equivalently, W (0) = 1 if you want to use the Wronskian), so

ya, yb are LI solutions.

This means that we can write the general solution as

y(t) = c1 cosh(3t) + c2 sinh(3t).

Notably, because of the initial conditions being nice,

y(t) = y(0) cosh(3t) + y′(0) sinh(3t).

That is, this choice makes solving for the coeffiicents using ICs at t = 0 trivial: the first term
vanishes for y′(0) and the second term vanishes for y(0).

From time to time, we will use this ‘sinh/cosh’ basis instead for convenience.

5.4 Higher order ODEs

The procedure is the same for higher-order LCC ODEs

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0

with corresponding initial value problems specifying values

y(t0) = b0, y′(t0) = b1, · · · y(n−1)(t0) = bn−1.

(these ODEs are really first order systems for (y, y′, · · · , y(n−1)).

The space of solutions is now spanned by n basis functions, so we need to obtain n so-
lutions from the procedure.

First, plug in ert to find that

ert is a solution ⇐⇒ p(r) = 0

where p(r) is a characteristic polynomial of degree n (check this!).

Now the procedure is extended slightly:
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• Each non-repeated real root gives a solution ert

• Each pair of complex roots gives two solutions as in the 2nd order case

• Each root r repeated k times gives solutions

ert, tert, · · · , tk−1ert.

That is, we multiply by t to get new solutions, once for each repetition.

The last step takes some effort to show, but the rest is just as in the second order case.

Examples: For the equation

y′′′ − y′′ − y′ + 1 = 0,

we have
p(r) = (r − 1)2(r + 1), r = −1, 1, 1

so e−t, et and tet are the basis solutions provided by the procedure.

The general solution is then

y(t) = c1e
−t + c2e

t + c3te
t.

The equation
y(4) − y = 0, y(0) = 1, y′(0) = y′′(0) = y′′′(0)

has characteristic polynomial/roots

p(r) = r4 − 1, r = ±1, ±i.

The two complex roots give two real solutions sin t and cos t, and the general solution is

y = c1 sin t+ c2 cos t+ c3e
t + c4e

−t.

Plugging in the initial conditions,

1 = c2 + c3 + c4, 0 = c1 + c3 − c4, 0 = −c2 + c3 + c4, 0 = −c1 + c3 − c4

which can be solved (first get c2 = 1/2, then c3 = c4) to obtain

c1 = 0, c2 =
1

2
, c3 = c4 =

1

4

so the solution is

y(t) =
1

2
cos t+

1

4
et +

1

4
e−t.
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6 Example: a spring

Consider a spring with displacement x(t) from x = 0 and velocity v(t).
Suppose the spring is influenced by the following forces:

• A spring force −kx

• A damping force −cv

• An external force F (t) applied to the spring

We’ll deal with the F (t) part later. For now, assume that the spring is stretched to some
initial displacement and then let go, allowed to vibrate (?).

According to Newton’s third law,

m
d2x

dt2
= −kx− cdx

dt
.

Upon rearranging (and letting x′ denote dx/dt etc.), we get

x′′ +
c

m
x′ +

k

m
x = 0.

Let’s see what the solution says about the spring’s behavior. FIrst of all, note that

no damping =⇒ x′′ +
k

m
x = 0

which has solutions
x(t) = c1 cosωt+ c2 sinωt, ω =

√
k/m

i.e. the spring oscillates at a frequency ω.

What happens with damping? For simplicity, let’s take the equation

x′′ + 2βx′ + x = 0

instead (this turns out to be sufficient to study - see the homework).

The characteristic polynomial has roots

λ1, λ2 = −β ±
√
β2 − 4.
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First, notice that if β > 2 then both roots are real and negative; the solution is

x(t) = c1e
λ1t + c2e

λ2t.

Both terms go to zero as t→∞ regardless of c1, c2 so

lim
t→∞

x(t) = 0.

Moreoever, there is no oscillation. The spring just shrinks back to its resting state (we
call this overdamped); the damping is strong enough that it prevents any back-and-forth-
motion.

The rest of the cases are left to you. It should be true that if there is positive damping
(β > 0), then

lim
t→∞

x(t) = 0 for any initial condition

since the spring should lose energy from the damping over time (the force acts in the opposite
direction of its motion).
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