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More topics on PDEs

Self-adjoint operators and projection

J. Wong (Fall 2020)

1 Preliminaries: self-adjoint operators

In studying the heat equation, we encountered the operator

L = − d2

dx2

along with boundary conditions like

φ(0) = φ(1) = 0

in calculating the eigenfunctions. Without delving too much into the theory (Sturm-
Liouville theory), it is useful to identify the property that allows the eigenfunction method
to work.

For convenience, let us consider the operator

L = − d2

dx2
, for L2 functions defined on [a, b] (1.1)

and the Dirichlet boundary conditions

φ(a) = φ(b) = 0. (1.2)

When solving eigenvalue problems, etc. with these boundary conditions, we look in the space

S = {v ∈ L2[a, b] such that v(a) = v(b) = 0}

i.e. functions that satisfy the boundary conditions. Recall also that the inner product

〈v, w〉 =

∫ b

a

v(x)w(x) dx

is well defined for such functions (this is the L2 part).
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Now, a calculation. Let u(x) and v(x) be any functions in S. Then

〈Lu, v〉 =

∫ b

a

−u′′(x)v(x) dx

= −u′v
∣∣∣b
a

+

∫ b

a

u′v′ dx

= (uv′ − u′v)
∣∣∣b
a
−
∫ b

a

uv′′ dx

= (uv′ − u′v)
∣∣∣b
a

+ 〈u, Lv〉

This is Green’s formula for the operator L.

But u and v both satisfy the boundary conditions (1.2). The ‘boundary terms’ from
integration by parts vanish, leaving

〈Lu, v〉 = 〈u, Lv〉 for all u, v satisfying the BCs. (1.3)

This important property deserves a box:

Self-adjointness: Given an operator L and some boundary conditions, we say that L with
those BCs is self-adjoinht if

〈Lu, v〉 = 〈u, Lv〉 for all u, v that satisfy the BCs.

This property involves three parts: an interval [a, b], an operator L, and boundary
conditions.

Note that for L = −d2/dx2 in particular we also have Green’s formula

〈Lu, v〉 = (uv′ − u′v)
∣∣∣b
a

+ 〈u, Lv〉 (1.4)

which holds for any L2 functions u and v.

The nice properties of eigenfunctions/values turns out to be guaranteed so long as the
operator L is self-adjoint (plus a few technical conditions) - this is the basis of Sturm-
Liouville theory.

The theory allows one to extend the eigenfunction method to more operators, in partic-
ular those of the form

Lu = −(p(x)ux)x + q(x)u, p(x) > 0 in [a, b].
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1.1 Examples (self-adjoint operators):

Example 1 (not self-adjoint: Consider

Lφ = φ′

in [a, b] with any boundary conditions. Then

〈Lu, v〉 =

∫ b

a

u′v dx = uv
∣∣∣b
a
−
∫ b

a

uv′ dx = (bdry terms) + 〈u,−v′〉

There is no hope of L being self-adjoint since clearly

〈u, Lv〉 = 〈u, v′〉 6= 〈u,−v′〉.

Integration by parts once gives a minus sign that makes the property fail.
Compare to Lφ = φ′′, where IBP twice has the minus signs cancel (and it is self-adjoint with
the right BCs): 〈u′′, v〉 = (bdry terms) + 〈u, v′′〉.

Example 2 (not self-adjoint): We check self-adjointness for the boundary value problem

xy′′ = λy, y(0) = 0, y′(1) = 0.

Let L[y] = xy′′. Then∫ 1

0

L[u]v dx =

∫ 1

0

xu′′v dx = xu′v
∣∣∣1
0
−
∫ 1

0

u′(xv)′ dx.

The boundary term vanishes; integrating by parts again we get∫ 1

0

L[u]v dx = −u(xv)′
∣∣∣1
0

+

∫ 1

0

u(xv)′′ dx = −u(1)v(1) +

∫ 1

0

u(xv)′′ dx.

The operator is not self-adjoint (there is a boundary term left, and the integral
∫ 1

0
u(xv)′′ dx

is not
∫ 1

0
uL[v] dx, so it fails on two counts).
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2 Inhomogeneous boundary conditions

First consider an IBVP with homogeneous BCs:

ut = −Lu+ h(x, t), x ∈ [0, π], t > 0

u(0, t) = 0, u(π, t) = 0, t > 0

u(x, 0) = f(x)

(2.1)

with Lu = −uxx, which has eigenfunctions φn = sinnx and λn = n2 for n ≥ 1.

Note that since u and φn satisfy the homogeenous BCs, the self-adjoint property says

〈Lu, φn〉 = 〈u, Lφn〉

We’ll use this to solve the problem. The solution has the form

u(x, t) =
∑
n≥1

cn(t)φn(x), cn(t) =
〈u, φn〉
〈φn, φn〉

=
1

kn
〈u, φn〉

for the usual inner product and kn = 〈φn, φn〉 and

h(x, t) =
∑
n≥1

hn(t)φn(x).

To find 〈u, φn〉, we must use the PDE. Take the projection

· → 〈·, φn〉
〈φn, φn〉

of the PDE to get
1

kn
〈ut, φn〉 = − 1

kn
〈Lu, φn〉+

1

kn
〈h(x, t), φn〉

c′n(t) = − 1

kn
〈Lu, φn〉+ hn(t)

since the t-derivative can be swapped with the series sum for u. Now observe that both u
and φn satisfy the homogeneous BCs for L, which is self-adjoint, so

〈Lu, φn〉 = 〈u, Lφn〉 = λn〈u, φn〉 = λnkncn(t).

It follows that
c′n(t) = −λncn(t) + hn(t)

which is what you would get using the ‘plug in the series’ method.

Similarly, we can project the ICs (this is the same as in previous examples) to get

cn(0) =
〈f, φn〉
〈φn, φn〉

.
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2.1 inhomogeneous BCs

The value of the projection method is that it works when u does not have homogeneous
BCs. Let’s return to the example above, but now suppose

ut = −Lu+ h(x, t), x ∈ [0, π], t > 0

u(0, t) = e−t, u(π, t) = 0, t > 0

u(x, 0) = f(x)

(2.2)

As we will see, the correct eigenvalue problem uses the homogeneous BCs (they have to
be homogeneous to get eigenfunctions!). The eigenfunctions/values to use are thus the same:

φn = sinnx, λn = n2, n ≥ 1.

Now let u be the solution to the full inhomogeneous problem. The key point is that since
u does not have homogeneous BCs,

〈Lu, φn〉 = (bdry terms) + 〈u, Lφn〉.

The φ’s are still a basis for functions on [0, π] (regardless of the BCs), so

u(x, t) =
∑
n≥1

cn(t)φn(x)

Now project the PDE onto φn, i.e. take

· → 〈·, φn〉
〈φn, φn〉

with kn = 〈φn, φn〉 to get

c′n(t) = − 1

kn
〈Lu, φn〉+ hn(t).

Now write out the boundary values for u and φn carefully:

φn(0) = φn(π) = 0, u(0, t) = e−t, u(π, t) = 0.

By Green’s formula, the self-adjoint property almost holds, but there is a boundary term:

〈Lu, φn〉 = −
∫ π

0

uxxφn dx

= (uφ′n − uxφn)
∣∣∣π
0

+

∫ π

0

uφ′′n dx

= (uφ′n − uxφn)
∣∣∣π
0

+ 〈u, Lφn〉

= u(0, t)φ′n(0) + 〈u, Lφn〉
= ne−t + knλncn(t)
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since φ′n = n cosnx. Thus

c′n(t) =
n

kn
e−t + λncn(t) + hn(t).

This is an ODE we can solve - the extra term accounts for the inhomogeneous BC. The
fact that the φ’s are an orthogonal basis means all steps here are justified, so u(x, t) with
the coefficients we solve for is really the solution.

Why these φ’s? Note that the projection could be done with any eigenfunction basis to
get the projected PDE. For instance, take the example above with no source,

ut = uxx, u(0, t) = e−t, u(π, t) = 0

but try to use φn = cosnx instead and

u(x, t) =
∑

an(t) cosnx.

We still have that Lφn = λnφ̃n (and in fact the λ’s are the same. This gives

a′n(t) = − 1

kn
〈Lu, φn〉

〈Lu, φn〉 = (uxφn − uφ′n)
∣∣∣π
0

+ 〈u, Lφn〉

〈Lu, φn〉 = uxφn

∣∣∣π
0
− e−tφ′n(0) + knλnan(t).

leading to the nasty equation

a′n(t) = −λnan(t) + (−1)nux(π, t)− ux(0, t)

But this is both wrong (the e−t vanishes) and not useful: the ux terms are unknown since
ux is not given at the boundaries (wrong BCs). We must have φn vanish at the boundaries
to cancel out this term - exactly the homogeneous BCs for the problem.
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2.2 Example 1

We solve the IBVP

ut = uxx, x ∈ (0, π), t > 0

ux(0) = A, ux(π) = 0

u(x, 0) =T0

(2.3)

which describes heat in a metal rod insulated at one end and with a constant output flux A
at the other (assuming A > 0). The operator is Lu = −uxx and the eigenvalue problem is

−φ′′ = λφ, φ′(0) = φ′(π) = 0 =⇒ φn = cosnx, λn = n2, n = 0, 1, 2, · · ·

You could try to look for a steady state first:

0 = w′′(x), w′(0) = A, w′(π) = 0

so w(x) = ax+ b. But the BCs then require both a = A and a = 0. The failure makes some
sense here, because the rod is insulated except that heat is rmoved, so it should just keep
draining and not reach an equilibrium.

PDE solution: Let u be the solution to the IBVP. Then

u(x, t) =
∞∑
n=0

cn(t)φn(x).

Now take the inner product of the DE with φn to get (with kn = 〈φn, φn〉)

c′n(t) = −〈Lu, φn〉
kn

=
1

kn
(φnux − φ′nu)

∣∣∣π
0
− 1

kn
〈u, Lφn〉.

By the boundary conditions,

φ′n(0) = φ′n(π) = 0,

ux(0) = A, ux(π) = 0.

Plugging this into the boundary terms, we get

c′n(t) = −Aφn(0)

kn
− λncn.

Now from the IC,

f(x) =
∞∑
n=0

cn(0)φn(x) =⇒ cn(0) =
〈f, φn〉
〈φn, φn〉

.

But f = T0φ0 so it follows that

c0(0) = T0, cn(0) = 0 for n > 0. (2.4)
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This gives the IVP for the cn’s:

c′n + λncn = −A/〈φn, φn〉, cn(0) given by (2.4).

Solve the coeff. ODEs: There are two cases. When λn 6= 0,

cn(t) = − 2A

πλn
(1− e−λnt)

noting that 〈φn, φn〉 = π/2 for n ≥ 1.

But for λ0 = 0, we have cn(0) = T0 and (note that 〈φ0, φ0〉 = π)

c′0 = −A/〈φ0, φ0〉 =⇒ c0(t) = T0 −
A

π
t.

Summarize: Thus, the solution is

u(x, t) = T0 −
A

π
t− 2A

π

∞∑
n=1

(1− e−λnt)
λn

φn

with λn = n2 and φn = cosnx and 〈φn, φn〉 =
∫ π
0

cos2 nx dx (you could simplify more). Note
that 〈φ0, φ0〉 = π and 〈φn, φn〉 = π/2; the integrals are different for n = 0 and n 6= 0.
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2.3 Example 2 (lengthy)

A fully worked example similar to the one in Section 2.1. We solve the heat equation in [0, π]
with a time-dependent boundary condition:

ut = uxx, x ∈ (0, π), t > 0,

u(0, t) = 0, u(π, t) = At, t > 0,

u(x, 0) = f(x).

(2.5)

The eigenfunctions/values are

φn = sinnx, λn = n2, n ≥ 1.

Write the solution u in terms of the eigenfunctions:

u(x, t) =
∞∑
n=1

cn(t)φn(x).

Now we project the PDE
ut = −Lu

onto the eigenfunction φn using

· → 〈·, φn〉
〈φn, φn〉

with kn = 〈φn, φn〉 to get

c′n(t) = − 1

kn
〈Lu, φn〉

Integrating by parts and/or using Green’s formula,

c′n(t) = − 1

kn
((uφ′n − uxφn)

∣∣∣π
0
− 〈u, Lφn〉)

and noting that only one of the boundary terms (at x = π) remains, we get

c′n(t) = − 1

kn
u(π, t)φ′n(π)− λncn(t)

c′n(t) = −Ant
kn

cosnπ − λncn(t)

For brevity (note that kn = π/2), set

γn = −2An cos(nπ)

π
. (2.6)

The ODE for cn is then
c′n(t) + λncn(t) = γnt
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As before, write the initial condition in terms of the eigenfunction basis:

f(x) =
∞∑
n=1

anφn(x), an =
2

π

∫ π

0

f(x) sinnx dx. (2.7)

Then u(x, 0) = f(x) gives the initial condition for cn:

cn(0) = an.

At this point, we are ”done” in the sense that the solution is

u(x, t) =
∞∑
n=1

cn(t)φn(x)

where the cn’s are the solutions to the IVPs

c′n(t) + λncn(t) = γnt, cn(0) = an

with

γn = −2An cosnπ

π
, an =

2

π

∫ π

0

f(x)φn(x) dx

and λn = n2 and φn = sinnx. This completely defines the solution.

However, to be complete, we solve the ODEs. Use an integrating factor:

(eλntcn)′ = γne
λntt

to obtain

cn = ane
−λnt + γne

−λnt
∫ t

0

eλnss ds.

Evaluating the integral we get

cn(t) = ane
−λnt +

γn
λ2n

(
λnt− 1 + e−λnt

)
.

We can plug in λ2n and γn from (2.6) we get

cn(t) = ane
−n2t − 2A cos(nπ)

πn3

(
n2t− 1 + e−n

2t
)
. (2.8)

The solution is then given by

u(x, t) =
∞∑
n=1

cn(t)φn(x)

with cn(t) given by (2.8) and the an’s by (2.7). Note that the first term in the expression
(2.8) for cn(t) gives the solution if the boundary conditions were homogeneous; the second
term is the response to the inhomogeneous boundary conditions.
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