
Math 353 Lecture Notes
Intro to PDEs

Laplace’s equation in a disk

J. Wong (Fall 2020)

Topics covered

• Laplace’s equation in a disk

◦ Solution (separation of variables)

◦ Semi-circles (sections) and annuli

◦ Review: Cauchy-Euler equations

1 Laplace’s equation in a disk

Separation of variables can be used in geometries other than an interval/rectangle. To do
so, we need to have variables such that the boundaries are separated - only one variable
varies on each (e.g. only x and only y for the rectangle).

The (x, y) coordinates cannot be used for a disk, but polar coordinates work. Laplace’s
equation for u(r, θ) in a disk with a prescribed value f(θ) on the boundary is

urr +
1

r
ur +

1

r2
uθθ = 0, r ∈ (0, R), θ ∈ [0, 2π]

u(R, θ) = f(θ), θ ∈ [0, 2π]

We also need periodic boundary conditions in θ and a boundedness condition:

u(r, 0) = u(r, 2π), ur(r, 0) = ur(0, 2π) (1.1)

u(r, θ)is bounded for r ∈ [0, R] (1.2)
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Part I (eigenfunctions): The correct way to write the problem in operator terms is

urr +
1

r
ur −

1

r2
Lu = 0, Lu = −uθθ.

This is not obvious! To ‘derive it’, we can use separation of variables. Look for solutions

u = g(r)h(θ).

Substituting into the PDE we get

g′′(r)h(θ) +
1

r
g′(r)h(θ) +

1

r2
g(r)h′′(θ) = 0

=⇒ r2g′′(r) + rg′(r)

g(r)
= −λh

′′(θ)

h(θ)
(1.3)

With the periodic boundary conditions (1.1), we get a familiar eigenvalue problem:

h′′(θ) + λh(θ) = 0, h(0) = h(2π), h′(0) = h′(2π)

=⇒ h0 = a0, λ0 = 0, hn(θ) = cosnθ and sinnθ, λn = n2, n ≥ 1. (1.4)

Caution: As a warning, if the PDE is not homogeneous, SoV stops being useful here. At
this point, we take the eigenfunctions/values and use the eigenfunction method.

We now solve for gn from (1.3):

r2g′′n(r) + rg′n(r)− n2gn(r) = 0.

The ODE is a Cauchy-Euler equation with roots ±n (see review below; section 2); the basis
solutions are rn and r−n so the general solution is

gn =

{
cnr

n + dnr
−n n ≥ 1

c0 + d0 ln r n = 0

By the boundedness condition (1.2), dn = 0 (r−n and ln r are not finite at r = 0) so

gn = cnr
n, n ≥ 0.
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The separated solutions are then gn cosnθ and gn sinnθ, or (grouping by eigenvalue),

u0 =
a0
2
, un = rn(an cosnθ + bn sinnθ), n ≥ 1

for arbitrary constants an and bn (note that 1/2 chosen to match the Fourier series).

Part II (continuing with SoV): Since the PDE is homogeneous, the solution is a lin-
ear combination of the un’s. With φ0 = 1/2, φn = cosnθ for n ≥ 1 and ψn = sinnθ,

u(r, θ) = a0φ0 +
∞∑
n=1

rn(anφn + bnψn). (1.5)

Now to get the constants, impose the boundary condition at r = R:

f(θ) = u(R, θ) = a0φ0 +
∞∑
n=1

Rn(anφn + bnψn)

so by the usual calculation for the coefficients (with 〈f, g〉 =
∫ 2π

0
f(θ)g(θ) dθ)

an =
〈f, φn〉
〈φn, φn〉

=

{
1

πRn

∫ 2π

0
f(θ) cosnθ dθ for n ≥ 1

1
2π

∫ 2π

0
f(θ) dθ for n = 0

,

bn =
〈f, ψn〉
〈ψn, ψn〉

=
1

πRn

∫ 2π

0

f(θ) sinnθ dθ.

(1.6)

Note that this is just the Fourier series, but using the interval [0, 2π]. Using the inner prod-
uct ensures that we have all the constants etc. right (vs. quoting the Fourier series formula).

The process is now complete; the solution is the Fourier series (1.5) with coefficients (1.6).

Remark: If the problem were inhomogeneous, we would consider

u(r, θ) = a0(r)φ0 +
∞∑
n=1

an(r)φn + bn(r)ψn

then plug this into the PDE and proceed as in the eigenfunction method.
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1.1 Other shapes

The same method can be used to solve Laplace’s equation (or other PDEs) in any domain
where the boundaries are all ‘separable’, i.e. of the form

variable = const.

e.g. r = R for the circle or x = 0, B and y = 0, A for the rectangle’s four sides. Otherwise,
other techniques (beyond the scope of the course) must be used. This is required to get
eigenfunctions in one direction that don’t depend on the other (e.g. just φ(θ), not φ(θ, r)).

In polar coordinates, this means that sections (Θ1 ≤ θ ≤ Θ2) and annuli (R1 ≤ r ≤ R2) and
are also allowable domains (sketched below).

Boundary conditions (polar): An annulus and section are slightly different from the
circle - some implied boundary conditions become explicit ones.

• In a section, there are flat boundaries out of the origin at the θ endpoints.

• In an annulus, there are two boundaries in r where BCs can be specified.

For a section, the ‘periodic BCs’ are replaced by actual BCs at the θ endpoints.
For an annulus, the ‘bounded’ condition is replaced by the inner boundary.
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1.2 Example (semi-circle)

Consider the semi-circle (upper left figure on previous page)

urr +
1

r
ur +

1

r2
uθθ = 0, r ∈ (0, 2), θ ∈ [0, π/2]

u(r, 0) = u(r, π) r ∈ (0, R)

u(2, θ) = f(θ), θ ∈ [0, π]

Look for separated solutions g(r)φ(θ), leading to

−φ′′ = λφ, φ(0) = φ(π) in [0, π], g′′ +
1

r
g′ − λ

r2
g = 0.

Note there are actual BCs at θ = 0, π. The eigenvalue problem is familiar and has solutions

φn = sin(nθ), λn = n2, n ≥ 1.

The r equation is the same as for the full circle except that λ 6= 0, yielding

gn(θ) = cnr
n + dnr

−n =⇒ gn = cnr
n for n ≥ 1.

There is no n = 0 case to be concerned about. Thus the solution is, by superposition,

u(r, θ) =
∑

n≥1 cnr
n sinnθ.

and the cn’s are determined by the BC at r = 1, u(1, θ) = f(θ).

1.3 Example (annulus):

Consider the half-annulus with Neumann BCs,

urr +
1

r
ur +

1

r2
uθθ = 0, r ∈ (1, 2), θ ∈ [0, π]

(flat end): uθ(r, 0) = uθ(r, π) r ∈ (1, 2)

(inner): u(1, θ) = 0, θ ∈ [0, π]

(outer): u(2, θ) = f(θ), θ ∈ [0, π]
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The SoV steps work the same as before. The eigenfunctions/values are

φn(θ) = cosnθ, λn = n2, n ≥ 0.

However, λ = 0 is now an eigenvalue. The solution has the form

u(r, θ) = g0(r)φ0(θ) +
∑
n≥1

(cnr
n + dnr

−n)φn(θ).

As before, we have

gn(r) =

{
cnr

n + dnr
−n n ≥ 1

c0 + d0 ln r n = 0

but neither term is infinite in [1, 2] so they cannot be excluded. The BCs at r = 1 and r = 2
both must be applied to find the coefficients. Let 〈f, g〉 =

∫ π
0
f(θ)g(θ) dθ.

First apply the (inner) BC at r = 1:

0 = u(1, θ) =⇒ gn(0) = 0

=⇒ dn = −cn for n ≥ 1, c0 = 0.

Then apply the (outer) BC at r = 2:

f(θ) = u(2, θ) = d0 ln 2φ0 +
∑
n≥1

cn(2n − 2−n)φn(θ)

=⇒ cn =
1

2n − 2−n
〈f, φn〉
〈φn, φn〉

for n ≥ 1 (1.7)

and for n = 0 (recall that φ0 = 1 here)

d0 ln 2 =
〈f, φ0〉
〈φ0, φ0〉

=
1

π

∫ π

0

f(θ) dθ. (1.8)

In summary, with d0 and cn given by (1.8) and (1.7),

u(r, θ) = d0 ln r +
∑
n≥1

cn

(
rn − 1

rn

)
cosnθ
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2 Review: Cauchy-Euler equations

A type of ODE that can be solved exactly (appearing, previously, on the HW).
A Cauchy-Euler or equidimensional ODE of second order has the form

ax2y′′ + bxy′ + cy = 0, x > 0 or x < 0. (2.1)

To solve, guess a ‘trial solution’ of the form x-to-a-power. Since

y(x) = xγ =⇒ xy′ = γxγ, x2y′′ = γ(γ − 1)xγ

we have that xγ is a solution if and only if

p(γ) = aγ(γ − 1) + bγ + c = 0 (2.2)

where p(γ) is the ‘characteristic polynomial’. We need two linearly independent solutions to
solve (2.1). If γ1 6= γ2 are real, we are done (two solutions). Otherwise:

• If γ is a repeated root, then multiply by a factor of lnx (i.e. solns xγ and xγ lnx).

• γ = s+ ωi is complex, take real/imaginary parts to get two solutions:

xr = e(s+ωi) lnx =⇒ xs cos(ω lnx), xs sin(ω lnx).

• For negative x, replace with |x|.

In summary, the solution procedure is:

1) Plug in the trial solution xγ and find the characteristic polynomial p(γ).

2) Calculate the roots γ1, γ2 of p(γ)

3) The solution depends on the roots (three cases):

roots γ1 6= γ2, real =⇒ y = c1|x|γ1 + c2|x|γ2

root γ (repeated) , =⇒ y = c1|x|γ + c2x
γ ln |x|

roots γ = s± ωi (complex) =⇒ y = c1|x|s cos(ω ln |x|) + c2|x|s sin(ω ln |x|)

Remark: The cases are ‘like a LCC equation, but with lnx instead of x’ and the charac-
teristic polynomial is (2.2) instead of aγ2 + bγ + c (for LCC). In fact, one can convert the
Cauchy-Euler equation into an LCC one by using ln x = t.
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