Additional PDE problems Math 353, Fall 2020

November 15, 2020

Note: The review problems focus on the PDE material, in part because it's the most difficult, and in part because the book has only a few useful problems [see the final guide], whereas its a reasonable resource for *most* of the ODE topics. A few types of PDE problems are also not represented (e.g. Laplace's equation), since they're covered by the book / HW.

R1. Suppose u(x,t) solves the following wave equation problem with a source term, but with both initial conditions equal to zero, like so:

$$u_{tt} = u_{xx} + f(x)\sin 3t, \quad x \in [0,\pi]$$
$$u(0,t) = u(\pi,t) = 0$$
$$u(x.0) = 0, \quad u_t(x,0) = 0$$

a) Verify, by solving the equation, the statement that the *n*-th eigenmode of u is zero if and only if the *n*-th eigenmode of f is zero, i.e.

the ϕ_n term of u is zero \iff the ϕ_n term of f(x) is zero.

b) Under what conditions do all eigenmodes stay bounded for all t?

R2. Solve

$$u_t = 2u_{xx} + g(t), \quad x \in [0, 1], t > 0$$

$$u(0, t) = 0, \quad u(1, t) = 0, \quad t > 0$$

$$u(x, 0) = \sin 2\pi x.$$

where g(t) is a continuous function. Do so as follows:

a) Write u = v + w where w solves the IBVP with g = 0.

b) Find the solution for w.

c) Find the solution for v. Hint: it helps to write the source as $g(t) \cdot 1$.

Hint again: your solution will end up with an integral of g - use an integrating factor.

R3. Consider, for a constant A, the IBVP

$$u_t = u_{xx} + Au, \quad x \in [0, \pi], \ t > 0$$

 $u(0, t) = u(\pi, t) = 0$
 $u(x, 0) = f(x)$

For which values of A is there a time-independent solution to the PDE + BCs (ignoring the initial condition)?

Answer this question without solving the full PDE for u(x,t). Are you able to identify the solution completely, or is there an unknown left?

R4. (do R3 before (d) and (e)). Consider the PDE and BCs

$$u_t = u_{xx} + Au, \quad x \in [0, \pi], \ t > 0$$
$$u(0, t) = u(\pi, t) = 0$$

where A is a constant along with the initial condition

$$u(x,0) = f(x) = \sum_{n} f_n \phi_n.$$

You are given the eigenvalue problem $-\phi'' = \lambda \phi$ and eigenvalues/functions

$$\lambda_n = n^2, \quad \phi_n = \sin nx$$

a) Find the solution in the form $u = \sum_{n} c_n(t)\phi_n(x)$ by plugging the series into the PDE. Give formulas for any coefficients in terms of definite integrals (simplify as much as possible).

b) Suppose A = 1. Is there a time-independent solution w(x) to the PDE + BCs? If so, under what conditions on f(x) is it true that

$$\lim_{t \to \infty} u(x, t) = w(x)$$

i.e. that w(x) is a steady state?

- c) Answer (b) again for A = 2.
- d) Answer (b) yet again for A = 4.

R5. Suppose f(x) is an L^2 function defined on the interval $[0, \pi]$ and

$$\int_0^{\pi} f(x) \cos nx \, dx = 0 \text{ for all } n \ge 1.$$

- a) What can be said about f?
- b) Answer the same question, but if instead

$$\int_0^{\pi} f(x) \sin nx \, dx = 0 \text{ for all } n \ge 1.$$

R6. Consider the initial boundary value problem

$$u_t = u_{xx}, \quad x \in (0, 2), \ t > 0$$
$$u_x(0, t) = u_x(2, t) = 0, \quad t > 0$$
$$u(x, 0) = \sin(\pi x/2).$$

Show that there is a steady state (explain why the limit exists!)

$$w(x) = \lim_{t \to \infty} u(x, t)$$

and compute it (get an explicit result). Note that you will need to solve for u(x, t), but may not need to evaluate all of the constants/coefficients fully.

R7. Consider the problem of finding u(x,t) such that

$$u_t + 2\gamma u_x = u_{xx}, \quad x \in (0, 1), \ t > 0$$

 $u(0, t) = 0, \quad u(1, t) = 0, \quad t > 0.$

where $\gamma \neq 0$ is a real number.

a) Derive a set of DEs you could solve to find all product solutions $u = c(t)\phi(x)$.

b) State the relevant eigenvalue problem and solve it. Also show that there are no nonoscillatory eigenvalues (i.e. not containing sin or cos).

R8. Consider the IBVP

$$u_{tt} = 4u_{xx} + \sin t \cos x \quad x \in [0, \pi],$$

$$u_x(0, t) = 0, \quad u_x(\pi, t) = 0,$$

$$u(x, 0) = 0, \quad u_t(x, 0) = f(x)$$

a) Derive the ODEs (with initial conditions) you could solve for the coefficients of the solution $u = \sum c_n(t)\phi_n(x)$. *Hint: the problem is not homogeneous!*.

You are given the eigenvalues/functions

$$\cos nx$$
, $\lambda_n = n^2$, $n \ge 0$.

b) Solve the ODEs to complete the solution if

$$f(x) = 1 + 2\cos x.$$

(Pay attention to which ones are trivial and which you actually need to solve)