HOMEWORK 9 MATH 353, FALL 2020

DUE WEDNESDAY OCT. 28

Book problems:

• Section 10.5: 7

Supplementary problems: 10.5, 7-12, 21 (all heat equation problems)

Non-book problems:

P1. We defined a linear differential equation to be one of the form

$$Lu = f \tag{1}$$

where L is an operator involving derivatives that is linear.

For the heat equation with a source,

$$u_t = ku_{xx} + f \tag{2}$$

what is 'the operator' in the sense of the definition of a linear DE as in (1)? (Note: in class, we used L to denote only part of the operator asked for here).

b) Again, recall that an equation Lu = f is 'homogeneous' if f = 0. Which of the following PDEs are homogeneous?

- i) $u_t + x^2 u_x = k u_{xx}$, where c, k are constants
- ii) $u_t = u_{xx} + Ax$ where A is a constant
- iii) $u_{tt} = c^2 u_{xx} + u$, where c is a constant

c) The term 'homogeneous' is defined the same way for boundary conditions - Which of the following boundary conditions are homogeneous?

i)
$$u(1,t) = -2$$

ii)
$$u(0,t) = -2u_x(1,t)$$
 (where $u_x = \partial u/\partial x$)

iii)
$$u(0,t) = u(1,t)$$

P2 (calculations for later problems). Express the function

$$f(x) = x, \quad x \in [0, 2]$$

in terms of the eigenfunction bases obtained by solving the eigenvalue problems

$$-\phi'' = \lambda\phi, \quad \phi(0) = \phi(2) = 0$$

and

$$-\phi'' = \lambda \phi \quad \phi(0) = \phi'(2) = 0.$$

(Note: you don't need to show work for solving the eigenvalue problems, as both showed up in class or homework). You don't need to show work for standard integrals like $\int xe^x dx$, $\int x \cos x dx$.

P3. Solve the IBVP

$$u_t = 3u_{xx}, \qquad x \in (0, 2), \ t > 0$$

 $u(0, t) = 0, \quad u_x(2, t) = 0,$
 $u(x, 0) = x.$

How much time is required, approximately, for the maximum value of u to reach 10% of its initial value? (Use the largest term only to estimate this).

P4. Let $A \neq 0$ be a constant. Consider the IBVP

$$u_t = u_{xx} + Ax,$$
 $x \in (0, 2), t > 0$
 $u(0, t) = 0, \quad u(2, t) = 0,$
 $u(x, 0) = 0.$

a) Look for a solution $u = \sum c_n(t)\phi_n(x)$ (using the eigenfunctions you'd use when A = 0). Also expand x in the basis and plug into the PDE. Use this to derive ODEs for $c_n(t)$.

Then solve the ODEs to obtain the solution.¹

b) What is $\lim_{t\to\infty} u(x,t)$? Express in terms of the eigenfunction basis (as $\sum (\cdots) \phi_n$).

c) (optional, to think about) Is there a simpler/easier way to find the limit in (b)? *Hint: the limit is an 'equilibrium' state that does not change in time.*

¹You can also use the projection approach; i.e. project all the terms in the PDE onto the ϕ_n component.