MATH 353 LECTURE NOTES LAPLACE TRANSFORM: FUNDAMENTALS

J. WONG (FALL 2018)

Topics covered

- Introduction to the Laplace transform
- Theory and definitions
- Domain and range of \mathcal{L}
- Inverse transform
- Fundamental properties
- linearity
- transform of derivatives
- Use in practice
- Standard transforms
- A few transform rules
- Using \mathcal{L} to solve constant-coefficient, linear IVPs
- Some basic examples

1. The idea

We turn our attention now to transform methods, which will provide not just a tool for obtaining solutions, but a framework for understanding the structure of linear ODEs.

The idea is to define a transform operator \mathcal{L} on functions,

$$
\mathcal{L}: \text { origin space } \rightarrow \text { transformed space }
$$

such that the ODE in the transformed space is much easier to solve. We will consider an integral transform, which takes the form

$$
\mathcal{L}[f(t)]=\int_{D} K(s, t) f(t) d t
$$

where D is some domain (usually $(-\infty, \infty)$ or $(0, \infty)$) and $K(s, t)$ is a function called the kernel of the transform. One of the two most important integral transforms ${ }^{1}$ is the Laplace transform \mathcal{L}, which is defined according to the formula

$$
\begin{equation*}
\mathcal{L}[f(t)]=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \tag{1}
\end{equation*}
$$

i.e. \mathcal{L} takes a function $f(t)$ as an input and outputs the function $F(s)$ as defined above.

[^0]

They key properties of the Laplace transform (which we'll look at in detail) are:

- \mathcal{L} is a linear operator
- \mathcal{L} turns differentiation in t into multiplication by s (almost):

$$
\mathcal{L}\left[f^{\prime}\right]=s \mathcal{L}[f]-f(0) .
$$

- \mathcal{L}^{-1} exists and both \mathcal{L} and \mathcal{L}^{-1} can be computed in practice

Because of these properties, given an ODE

$$
y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f(t)
$$

we can:

1) Use the transform to convert this into an algebraic equation for $Y=\mathcal{L}[y]$.
2) solve for Y in the s-space
3) Apply \mathcal{L}^{-1} to return to the t-space and get $y(t)$

Typically, the equations in (2) are much easier to work with than the ODE. The s-space will tell us information about the solution that would be difficult to obtain directly.
motivating example For example, let's solve

$$
0=y^{\prime}-y
$$

Let $Y(s)=\mathcal{L}[y(t)]$ be the Laplace transform of the solution. Applying \mathcal{L} to the equation, we obtain the transformed equation

$$
\mathcal{L}[0]=\mathcal{L}\left[y^{\prime}\right]-\mathcal{L}[y]=s Y-y(0)-Y .
$$

Since $\mathcal{L}[0]=0$, we get

$$
0=(s-1) Y-y(0)
$$

which is trivial to solve! The transformed solution to the ODE is then

$$
Y(s)=\frac{y(0)}{s-1}
$$

Here is the point at which we have to do actual work - the price of transforming the ODE is that we have to undo the transformation to get the desired solution, $y(t)$. In this case, it is easy to show that $\mathcal{L}\left[e^{t}\right]=1 /(s-1)$, from which we can conclude that

$$
y(t)=y(0) e^{t}
$$

2. The LAPLACE TRANSFORM

Now we go through the basic theory. The treatment here is not be completely rigorous; some technical details are omitted in favor of getting to the key points.

Definition: The Laplace transform $F(s)$ of a function $f(t)$ is

$$
\begin{equation*}
\mathcal{L}[f(t)]=F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \tag{2}
\end{equation*}
$$

defined for all s such that the integral converges.
2.1. Domain/range of the Laplace transform. We want to find a set of functions for which (2) is defined for large enough s. For (2) to be defined, we need that:

- f is integrable and defined for $[0, \infty)$
- f grows more slowly than the $e^{-s t}$ term

Hereafter, we shall assume that f is defined on the domain $[0, \infty)$ unless otherwise noted.
Definition: A function $f(t)$ is piecewise continuous if it is continuous except for an isolated set of jump discontinuities. ${ }^{2}$

Definition: A function $f(t)$ is of exponential type (or order) if there are constants a and k such that

$$
\begin{equation*}
|f(t)| \leq K e^{a t} \tag{3}
\end{equation*}
$$

Note: Technically, this need only hold as $t \rightarrow \infty$, but the distinction is not important here.
These two properties are enough to guarantee \mathcal{L} is defined:

Theorem: If f is piecewise continuous and of exponential type as in (3) then

$$
\mathcal{L}[f(t)]=F(s) \text { is defined for all } s>a
$$

Informally: If f grows slower than $e^{s t}$ then $F(s)$ is defined, so if f grows slower than $e^{a t}$ for some a then $F(s)$ is defined for all $s>a$.

Proof. (Sketch.) We need to show that $\int_{0}^{\infty} e^{-s t} f(t) d t$ is finite when $s>a$. Use the bound on f to estimate

$$
\left|\int_{0}^{\infty} e^{-s t} f(t) d t\right| \leq \int_{0}^{\infty} K e^{-(s-a) t} d t=\frac{K}{s-a}
$$

which is finite so long as $s>a$. It follows (omitting technical details) that the integral exists and is finite, so \mathcal{L} is defined for $s>a$.

Note on the theorem and proof: The condition (3) can be replaced with the weaker condition that $|f(t)| \leq K e^{a t}$ for $t>M$ for some M (that is, f is eventually bounded by an exponential). It does not matter what f does in a finite interval, which allows the assumptions to be relaxed a bit.

For the proof, there is a problem since $\int_{0}^{\infty} e^{-s t} f(t) d t$ is not known to exist in the
first place. To be correct, we must use a comparison test for integrals: If there is an 'upper bound' function $h(t)$ such that

$$
|g(t)| \leq h(t) \text { and } \int_{0}^{\infty} h(t) d t<\infty
$$

then $\int_{0}^{\infty} g(t) d t$ exists (and is finite).

3. Fundamental properties

The most basic property is also the most essential, so it gets a box:
Linearity: The Laplace transform \mathcal{L} is a linear operator.
Proof: Suppose f_{1}, f_{2} are functions for which \mathcal{L} is defined and $c_{1}, c_{2} \in \mathbb{R}$. Then

$$
\begin{aligned}
\mathcal{L}\left[c_{1} f_{1}+c_{2} f_{2}\right] & =\int_{0}^{\infty} e^{-s t}\left(c_{1} f_{1}(t)+c_{2} f_{2}(t)\right) d t \\
& =c_{1} \int_{0}^{\infty} e^{-s t} f_{1}(t) d t+c_{2} \int_{0}^{\infty} e^{-s t} f_{2}(t) d t \\
& =c_{1} \mathcal{L}\left[f_{1}\right]+c_{2} \mathcal{L}\left[f_{2}\right] .
\end{aligned}
$$

Note that if $\mathcal{L}\left[f_{1}\right]$ and $\mathcal{L}\left[f_{2}\right]$ are defined for $s>a$ then the same is true of the linear combination $c_{1} f_{1}+c_{2} f_{2}$.

The other key property is that it acts in a nice way on derivatives:

Theorem: Suppose f is of exponential type (i.e. (3) holds) and f^{\prime} is piecewise continuous. Then $\mathcal{L}\left[f^{\prime}(t)\right]$ exists on the same domain as $\mathcal{L}[f]$ and

$$
\begin{equation*}
\mathcal{L}\left[f^{\prime}(t)\right]=s \mathcal{L}[f(t)]-f(0) . \tag{4}
\end{equation*}
$$

Conceptually, it is essential to understand to that the above means
derivatives in the original space \Longleftrightarrow multiplication in the transformed space
up to the extra terms. The proof is straightforward and worth knowing. For simplicity, assume that f is continuous. Let a be the constant in (3); that is,

$$
|f(t)| \leq K e^{a t}
$$

To get the formula, integrate by parts (carefully):

$$
\begin{aligned}
\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t & =\lim _{b \rightarrow \infty} e^{-b t} f(t)-f(0)-\lim _{b \rightarrow \infty} \int_{0}^{b}\left(-s e^{-s t}\right) f(t) d t \\
& =-f(0)+s \lim _{b \rightarrow \infty} \int_{0}^{b} e^{-s t} f(t) d t \\
& =-f(0)+s \mathcal{L}[f(t)]
\end{aligned}
$$

The first limit is zero by the bound on f since

$$
\left|e^{-s t} f(t)\right| \leq K e^{-(s-a) t} \rightarrow 0 \text { as } t \rightarrow \infty .
$$

For the second limit, we can take $b \rightarrow \infty$ since we have already established the improper integral converges in the proof that $\mathcal{L}[f]$ exists.

This result can be iterated to find the Laplace transform of higher order derivatives. For example,

$$
\begin{aligned}
\mathcal{L}\left[f^{\prime \prime}(t)\right] & \left.=s \mathcal{L}\left[f^{\prime}(t)\right]-f^{\prime}(0)\right) \\
& =s(s \mathcal{L}[f(t)]-f(0))-f^{\prime}(0) \\
& =s^{2} \mathcal{L}[f(t)]-s f(0)-f^{\prime}(0)
\end{aligned}
$$

and so on. Thus an n-th derivative in the original space correspond to multiplications by s^{n} in the transformed space (up to some polynomial in s). To be precise, we have:

Theorem (Laplace transform of derivatives): If $f^{(n)}$ is piecewise continuous and f and all its derivatives up to $n-1$ are of exponential type then

$$
\begin{equation*}
\mathcal{L}\left[f^{(n)}(t)\right]=s^{n} \mathcal{L}[f(t)]-s^{n-1} f(0)-s^{n-2} f^{\prime}(0)-\cdots-s f^{(n-2)}(0)-f^{(n-1)}(0) \tag{5}
\end{equation*}
$$

As before, if the transforms of $f, f^{\prime}, \cdots, f^{(n-1)}$ are defined for $s>a$ then the transform of $f^{(n)}$ is also defined for $s>a$.
3.1. Inversion. The Laplace transform has an inverse; for any reasonable nice function $F(s)$ there is a unique f such that $\mathcal{L}[f]=F$.

Inverse of the Laplace transform: If $F(s)$ is defined for $s>a$ then there is a unique function $f(t)$ such that

$$
\mathcal{L}[f(t)]=F(s) .
$$

In this case we write

$$
f(t)=\mathcal{L}^{-1}[F(s)] .
$$

Unfortunately, the details (and definition of \mathcal{L}^{-1} in general) require some complex analysis and are beyond the scope of this course. The inverse is notoriously difficult to work with in general. In practice, one typically computes $\mathcal{L}^{-1}[F(s)]$ by recognizing $F(s)$ as comprised of known transforms. In the next section, we derive some 'standard' transforms; these functions (along with some other known results) will be the things whose inverses are known.

4. Inverses and transforms

In this section we compute some common transforms and show strategies for computing the inverse transform of a function $F(s)$. This discussion will involve deriving some new properties of \mathcal{L} and will make use of a few results from calculus.

First, let us derive/state some basic transforms.
4.1. Easy cases. For some functions \mathcal{L} can be computed by integrating directly.

Constant function: For the constant function $f(t)=1$,

$$
\mathcal{L}[1]=\int_{0}^{\infty} e^{-s t} d t=\frac{1}{s}, \text { defined for } s>0 .
$$

Exponential:

$$
\mathcal{L}\left[e^{a t}\right]=\int_{0}^{\infty} e^{-(s-a) t} d t=\frac{1}{s-a}, \quad s>a .
$$

Sine/cosine: The formula above applies for complex exponentials. In particular,

$$
\mathcal{L}\left[e^{(a+b i) t}\right]=\frac{1}{s-(a+b i)}=\frac{s-a+b i}{(s-a)^{2}+b^{2}} .
$$

In particular, because \mathcal{L} is linear we can take real and imaginary parts to get

$$
\mathcal{L}\left[e^{a t} \sin b t\right]=\frac{b}{(s-a)^{2}+b^{2}}, \quad \mathcal{L}\left[e^{a t} \cos b t\right]=\frac{s-a}{(s-a)^{2}+b^{2}} .
$$

Polynomial: Let $n \geq 1$ be an integer. Then, using integration by parts, we can find the transform of t^{n} in terms of the transform for t^{n-1}. If $s>0$ then

$$
\begin{aligned}
\mathcal{L}\left[t^{n}\right] & =\int_{0}^{\infty} t^{n} e^{-s t} d t \\
& =\left.\frac{-1}{s} t^{n} e^{-s t}\right|_{t=0} ^{\infty}-\int_{0}^{\infty} n t^{n-1}\left(-\frac{1}{s} e^{-s t}\right) d t \\
& =\frac{n}{s} \mathcal{L}\left[t^{n-1}\right] .
\end{aligned}
$$

Note that both of the boundary terms in the integration by parts are zero ($t^{n} e^{-s t} \rightarrow 0$ as $t \rightarrow \infty$ and is equal to zero at $t=0$). Iterating n times and using $\mathcal{L}\left[t^{0}\right]=1 / s$, we find that

$$
\mathcal{L}\left[t^{n}\right]=\frac{n!}{s^{n+1}}
$$

Non-integer case: The transform for t^{p} when p is a real number is not as nice. Define the gamma function

$$
\Gamma(p)=\int_{0}^{\infty} e^{-t} t^{p-1} d t, \quad p>0
$$

Note that $\Gamma(n)=(n-1)$! if n is an integer. If $p>-1$ then

$$
\mathcal{L}\left[t^{p}\right]=\frac{\Gamma(p+1)}{s^{p+1}} .
$$

5. Transform rules/equivalences

Not every $F(s)$ is going to be immediately recognizable as a standard transform. Often, we need to break it into manageable parts. If you see something like

$$
\frac{s^{2}+3}{(s-1)^{2}(2 s-2)^{2}}
$$

you should think: how can this be turned into a sum of easy-to-invert functions? There are a number of rules to break expressions down.

Many of the rules are really correspondence between operations in the original space and the transform space (like differentiation in t being multiplication by s). They can be used to compute \mathcal{L} or \mathcal{L}^{-1}, but are also useful for analysis.

The list will grow considerably as the discussion progresses!
Linearity: The inverse transform \mathcal{L}^{-1} is linear. Thus sums can be inverted term by term and constant factors can be moved in/out of the transform.

$$
\begin{gathered}
\mathcal{L}^{-1}[c F(s)]=c \mathcal{L}^{-1}[F(s)] \\
\mathcal{L}^{-1}\left[F_{1}(s)+\cdots+F_{n}(s)\right]=\mathcal{L}^{-1}\left[F_{1}(s)\right]+\cdots+\mathcal{L}^{-1}\left[F_{n}(s)\right] .
\end{gathered}
$$

Derivatives in s : A dual property to the rule for $f^{\prime}(t)$. A derivative in the transformed space corresponds to multiplication by $(-t)$ in the original space:

$$
(-t)^{n} f(t) \rightleftharpoons F^{(n)}(s)
$$

For example,

$$
\mathcal{L}\left[t e^{t}\right]=-\frac{d}{d s}\left(\frac{1}{s-1}\right)=\frac{1}{(s-1)^{2}}
$$

This could also be used in reverse to find $\mathcal{L}^{-1}\left[1 /(s-1)^{2}\right]$.
Scaling s and t : The argument to the function $F(s)$ or $f(t)$ can be scaled by a constant (positive) factor. If $c>0$ is a constant then

$$
f(c t) \rightleftharpoons \frac{1}{c} F(s / c)
$$

For example, to invert $e^{-a s}$, we can calculate

$$
\mathcal{L}^{-1}\left[\frac{a}{s^{2}+a^{2}}\right]=\frac{1}{a} \mathcal{L}^{-1}\left[\frac{1}{(s / a)^{2}+1}\right]=\sin (a t)
$$

since $\frac{1}{\left.(s / a)^{2}+1\right)}$ is $F(s / a)$ where $F=\mathcal{L}[\sin t]$.
The first three are the most commonly used. There are a few others to be derived later.

6. Solving ODEs with the Laplace transform

We are now ready to use the Laplace transform to solve linear, constant coefficient initial value problems, that is equations of the form

$$
a_{n} y^{(n)}+a_{n-1} y^{(n-1)}+\cdots+a_{1} y^{\prime}+a_{0} y=f
$$

where the a_{i} 's are constants.
Remark: Example 2 (below) shows that the transform has no problem with inhomogeneous term, so long as we can transform/inverse transform them. Any order is also fine (see Example 3), but it makes the calculations much more involved.

The procedure is as follows:

1) Apply \mathcal{L} to the ODE to obtain an equation for $Y(s)=\mathcal{L}[y(t)]$. Use the initial conditions to evaluate the $y(0), y^{\prime}(0)$ etc. terms in (5). (easy; always the same process)
2) Solve the equation for $Y(s)$ (easy)
3) Decompose $Y(s)$ into a sum of functions that are easy to invert. (can be tricky depending on the form of $Y(s)$; it can be a mess).
4) Calculate each term of $\mathcal{L}^{-1}[Y(s)]$ (mostly straightforward if Step 3 was done well)

$$
\begin{array}{ccc}
t \text {-space } & \mathcal{L} & s \text {-space } \\
y^{(n)}+\cdots=f(t) & \xrightarrow{\longrightarrow} & s^{n} Y(s)+\cdots=F(s) \\
& & \begin{array}{c}
\text { solve for } Y \downarrow \\
Y(s)=\cdots \\
\\
y(t)=\cdots
\end{array} \\
& & \begin{array}{c}
\text { decompose } \downarrow \\
\mathcal{L}^{-1}
\end{array}
\end{array}
$$

It is worth noting, and we will see later, that the end goal is not always to get a formula for $y(t)$. If we are interested in understanding the behavior of solutions, the transform space can be the right place to do analysis.

Example 1 (homogeneous): A simple initial value problem.

$$
y^{\prime \prime}-2 y^{\prime}+y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Let $Y(s)=\mathcal{L}[y(t)]$. Take the transform of the ODE, then apply the initial conditions:

$$
\begin{aligned}
0 & =s^{2} Y-s y(0)-y^{\prime}(0)-2(s Y-y(0))+Y \\
& =s^{2} Y-s-2 s Y+2+Y \\
& =\left(s^{2}-2 s+1\right) Y-s+2 \\
& =(s-1)^{2} Y-s+2
\end{aligned}
$$

The solution in the transformed space is therefore

$$
Y(s)=\frac{s-2}{(s-1)^{2}}
$$

Now we write (this is an example of partial fractions)

$$
Y(s)=\frac{s-2}{(s-1)^{2}}=\frac{1}{s-1}-\frac{1}{(s-1)^{2}}
$$

The first term is $\mathcal{L}\left[e^{t}\right]$; for the second, see below. Inverting, we get

$$
\begin{aligned}
\mathcal{L}^{-1}[Y(s)] & =\mathcal{L}^{-1}\left[\frac{1}{s-1}\right]+\mathcal{L}^{-1}\left[\frac{1}{(s-1)^{2}}\right] \\
& =e^{t}+(-t) e^{t} \\
& =(1-t) e^{t}
\end{aligned}
$$

For the second term: Use the derivative-in-s rule, observing that

$$
\begin{equation*}
-\frac{1}{(s-1)^{2}}=\frac{d}{d s}\left(\frac{1}{s-1}\right) \tag{6}
\end{equation*}
$$

We know that $d / d s$ corresponds to multiplication by $-t$, i.e.

$$
\mathcal{L}\left[(-t)^{n} f(t)\right]=F^{(n)}(s)
$$

so we can use this to take the inverse transform of (6) to get

$$
\mathcal{L}^{-1}\left[1 /(s-1)^{2}\right]=(-t) e^{t}
$$

Alternate method: Use the translation in s rule,

$$
\mathcal{L}\left[e^{c t} f(t)\right]=F(s-c)
$$

and the fact that $\mathcal{L}[t]=1 / s^{2}$ to get

$$
\mathcal{L}^{-1}\left[\frac{1}{(s-1)^{2}}\right]=e^{t} c L^{-1}\left[\frac{1}{s^{2}}\right]=t e^{t}
$$

Example 2 (inhomogeneous): An initial value problem with a forcing term.

$$
y^{\prime \prime}+y=\sin \omega t, \quad y(0)=0, y^{\prime}(0)=1, \quad \omega \neq \pm 1
$$

Take the transform (using the standard result for sine):

$$
s^{2} Y-s y(0)-y^{\prime}(0)+Y=\frac{\omega}{s^{2}+\omega^{2}}
$$

Apply the initial condition and obtain

$$
\left(s^{2}+1\right) Y=1+\frac{\omega}{s^{2}+\omega^{2}}
$$

so we get

$$
Y=\frac{1}{s^{2}+1}+\frac{\omega}{\left(s^{2}+1\right)\left(s^{2}+\omega^{2}\right)}
$$

Now use partial fractions:

$$
\frac{1}{\left(s^{2}+1\right)\left(s^{2}+\omega^{2}\right)}=\frac{A}{s^{2}+1}+\frac{B}{s^{2}+\omega^{2}}
$$

which gives

$$
1=A s^{2}+A \omega^{2}+B s^{2}+B
$$

so $A+B=0$ and $A \omega^{2}+B=1$, solved by $A=1 /\left(\omega^{2}-1\right)$ and $B=-1 /\left(\omega^{2}-1\right)$. Thus Y, after using partial fractions, is

$$
Y=\frac{1}{s^{2}+1}+\frac{\omega}{\left(\omega^{2}-1\right)}\left(\frac{1}{s^{2}+1}-\frac{1}{s^{2}+\omega^{2}}\right)
$$

Now we recognize that

$$
\mathcal{L}[\sin t]=\frac{1}{s^{2}+1}, \quad \mathcal{L}[\sin \omega t]=\frac{\omega}{s^{2}+\omega^{2}},
$$

and use the known transforms to invert each term of Y :

$$
Y=\frac{\omega^{2}+\omega-1}{\omega^{2}-1} \sin t-\frac{1}{\omega^{2}-1} \sin \omega t
$$

Example 3 (higher order ODE): A fourth order IVP. The method works for any linear constant-coefficient ODE (of any order). We solve

$$
y^{(4)}-5 y^{\prime \prime}+4 y=0, \quad y(0)=1, y^{\prime}(0)=0, y^{\prime \prime}(0)=3, y^{\prime \prime \prime}(0)=0
$$

Take the Laplace transform and use the initial conditions:

$$
\left(s^{4} Y-s^{3}-3 s\right)-5\left(s^{2} Y-s\right)+4 Y=0
$$

Solve for Y to obtain

$$
Y(s)=\frac{s^{3}-2 s}{s^{4}-5 s^{2}+1}=\frac{s^{3}-2 s}{(s-1)(s+1)(s-2)(s+2)}
$$

Notice that the denominator just the characteristic polynomial of the ODE (which will be true in general). We can invert $Y(s)$ by using partial fractions to write it in the form

$$
Y(s)=\frac{1 / 6}{s-1}+\frac{1 / 6}{s+1}+\frac{1 / 3}{s-2}+\frac{1 / 3}{s+2}
$$

(The calculation here is tedious but straightforward). Each term can be inverted using $\mathcal{L}\left[e^{a t}\right]=1 /(s-a)$ to obtain the solution

$$
y(t)=\frac{1}{6}\left(e^{t}+e^{-t}\right)+\frac{1}{3}\left(e^{2 t}+e^{-2 t}\right) .
$$

[^0]: ${ }^{1}$ the other is the Fourier transform; we'll see a version of it later.

