HOMEWORK 2

DUE FRI. SEP. 4

Submission: Submit your solutions to gradescope. Note that I am not providing code snippets here; you should read the instructions (carefully) to see what functions you need to write (if unclear, feel free to ask).

Exercises. Nothing to submit here.

E1 (no submission). Suppose I have the tuples

```
tup = (1, 2)
foo = ([1, 2], [3, 4])
```

Verify that you can’t change the contents of `tup` using `tup[0]=...` and so on, and that

```
tup = (1, 2)
a = tup[0]
a = 3
```

doesn’t change the first element of `tup`. Can the contents of `foo` change (without re-defining `foo`)?

E2 (a slicing example). The \(k \)-th principal minor \(A_k \) of an \(n \times n \) matrix \(A \) is the upper left \(k \times k \) submatrix. For instance,

\[
A = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}, \quad A_1 = [1], \quad A_2 = \begin{bmatrix}1 & 2 \end{bmatrix}.
\]

Write a function `set_minor(mat, k, new)` that takes in a square matrix `mat` and a \(k \times k \) matrix `new` and sets the \(k \)-th principal minor of `mat` equal to `new`, e.g.

\[
k = 2, \quad \text{mat} = A, \quad \text{new} = \begin{bmatrix} 11 & 12 \\
13 & 14 \end{bmatrix} \implies \text{mat} = \begin{bmatrix} 11 & 12 & 3 \\
13 & 14 & 6 \\
7 & 8 & 9 \end{bmatrix}
\]

This should modify `mat` and leave `new` unchanged. Do this using one for loop (over the rows of \(A \)) and slices to set each row.

Assume that `mat` is represented by a list of rows.

b) Can you avoid using for loops entirely and without creating any new lists?

Hint: What does `mat[0:2][0:2]` do? Be careful with this!

example of slicing:
a = [0, 1, 2, 3, 4]
b = [10, 11, 12]
a[1:4] = b # now a is [0, 10, 11, 12, 4]
Programming problems.

Q1 (integration by random sampling). Here is a simple method for computing a definite integral
\[I = \int_{a}^{b} f(x) \, dx \]
where \(f(x) \) is a positive function.

a) Write a function that estimates \(I \) as follows (Monte Carlo integration)

 i) Consider a rectangle \(R \) with sides along the \(x \) and \(y \) axes large enough to contain the area under the curve \((x, f(x))\) in the given interval.

 ii) Generate \(N \) uniformly distributed points\(^1\) \((x, y)\) in \(R \) (note: \(x \) and \(y \) can be drawn from independent uniform distributions separately).

 iii) Estimate \(I \) by assuming that the ratio of the number of points under the curve to \(N \) is the ratio of \(I \) to the area of the rectangle.

Note that the function \(f(x) \) should be an input.

b) Estimate \(\pi \) by using (b) on the integral
\[\frac{\pi}{4} = \int_{0}^{1} f(x) \, dx \quad \text{where } f(x) = \sqrt{1-x^2}. \]
How many points \(N \) do you need to get to \(3.14 \cdots \)?

c) Create a table of the error in the estimate for \(\pi \) vs. \(N \) for \(N = 1000, 2000, \cdots, 10000 \). Rather than calculate the error once for each \(N \), you should have your code do a fairly large number of trials and then average the result.

Your code should output this result when run (via ‘main’).

\(^1\)Consult the documentation at https://docs.python.org/3/library/random.html to figure out how to generate a uniformly distributed real number in an interval \([a, b] \).
Q2 (binary search). Suppose I have a sorted list of values

\[a_0 \leq a_1 \leq \cdots \leq a_{n-1} \]

and I want to know if the value \(x \) is in the list. The binary search algorithm proceeds in the following way:

- First, check that \(x \) is between \(a_0 \) and \(a_{n-1} \)
- Start by setting \(\ell = 0 \) and \(r = n - 1 \) (left and right bounds)
- While not done:
 - Let \(c = (\ell + r)/2 \) (rounded) be the midpoint index.
 - if \(x \) is greater than \(a_c \), set \(\ell = c + 1 \)...
 - ...and if \(x \) is less than \(a_c \), (you figure this out)

The value \(x \), if it is in the list at all, must be between \(\ell \) and \(r \) (the ‘search interval’) at each step. The algorithm stops when the interval has a size of one.

a) (optional) Consider trying to find \(x = 1 \) in the list \([0,1,2,3,4,5]\). Write down, explicitly the steps taken by the algorithm. (This is a useful exercise when writing code - do a small case ‘by hand’ to both understand the process and have an example).

b) Write a function \textbf{search(vals, x)} that implements this algorithm. It should return the index of \(x \) if it is found, and either \(-1\) or \textit{None} if it is not found.

- Your algorithm, at each step, should print \([\ell, r]\).
- Try to keep the algorithm elegant by making the ‘base case’ (the step where the algorithm stops) as simple as possible.

- Style note: Don’t name the left bound \(1 \) - it’s bad style (is it \(\ell \) or one?).

c) Write a ‘main’ that creates a list of 100 elements (the numbers 0 to 99 for simplicity) and searches for some value (your choice), so that it will show the steps taken by the algorithm.