Math 260: Python programming in math

Fall 2020

Signal processing: The Fourier transform

An example...

A motivating example: Here's a sound wave plotted over time

It's a piano playing notes of a minor chord ($\mathrm{G}^{\#}, \mathrm{~B}, \mathrm{D}^{\#}$).
We can't tell the notes being played from this picture (sound vs. time)...
The wave is comprised of sounds of various frequencies - we instead want to plot the spectrum (showing the components of each frequency) for the notes.

An example...

For the first two notes:

Peaks: 206 Hz (G\#3), $412 \mathrm{~Hz}\left(\mathrm{G}^{\#} 4\right), 618 \mathrm{~Hz}\left(\mathrm{D}^{\#} 4\right)$

Peaks: 245 Hz (B3), 490 Hz (B4), $735 \mathrm{~Hz}\left(\mathrm{D}^{\#} 4\right)$

- Higher harmonics: multiples of the bases frequency present!
- Frequency plot gives valuable information about the signal...
- Our goal: what is the underlying theory?

Complex numbers: review

- $z=x+i y$ is at a point (x, y) in the complex plane \mathbb{C}
- real/imaginary parts $\operatorname{Re}(z)=x$ and $\operatorname{Im}(z)=y$
- Multiplication: $(a+i b)(c+i d)=a c-b d+i(b c+a d)\left(f r o m i^{2}=-1\right)$
- Conjugate: $z=x+i y \Longrightarrow \bar{z}=x-i y$

$$
\text { Euler's formula: } e^{i \theta}=\cos \theta+i \sin \theta
$$

- Polar form(use Euler's formula):

$$
x+i y=r e^{i \theta}, \quad\left\{\begin{array}{l}
r^{2}=x^{2}+y^{2}, \\
\theta=\tan ^{-1}(y / x)
\end{array}\right.
$$

- Note that $\overline{r e^{i \theta}}=r e^{-i \theta}$
- The magnitude of $z=x+i y$ is

$$
|z|=\sqrt{x^{2}+y^{2}}=r .
$$

- θ : the argument or phase (physics)

Complex numbers in python

Python has a built-in complex type!

- Multiplication, etc. are all defined ($\mathrm{z} * \mathrm{w}$ etc.)
- The imaginary unit is j (not i !); the number i is $1 j$.

$$
\begin{aligned}
& z=1+2 j \\
& b=4 \\
& w=1+b *(1 j)
\end{aligned}
$$

- numpy arrays are float by default. To make complex arrays:

```
z_values = np.array(0, dtype=complex)
```

- numpy functions like exp are defined for complex numbers:

```
z = np.exp(pi*1j)
print(z) # z is -1 + 1.22e-16j
x = float(z) # now a real number
```

Best practices (complex numbers have two parts):
Results that 'should be' real may be real up to rounding error

- Sometimes, you need to convert to an actual real number with float(z)
- This may hide errors... check real/imaginary parts before converting!

Fourier series: context

A physical interpretation... standing waves $h(x)$ for a string

- Case one: fixed at both ends $(h(0)=h(L)=0)$
- Case two: free to slide up and down $\left(h^{\prime}(0)=h^{\prime}(L)=0\right)$

Any vibration is a superposition (linear combination) of these modes.

Fourier series: context

A fundamental theorem from math: Fourier series representation

- Non-trivial to prove! Take as true here...
- Deep insights into physical systems and more (waves, ...)

Suppose $f(x)$ is a (not terrible) function defined on the interval $[-\pi, \pi]$.
Then it has a (complex) Fourier series representation

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

where the coefficients are given by

$$
c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x
$$

Note that if f is a real function, then coefficients come in 'pairs':

$$
c_{-n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{i n x} d x=\frac{1}{2 \pi} \int_{0}^{2 \pi} \overline{f(x) e^{-i n x}} d x=\overline{c_{n}}
$$

since $\overline{z_{1} z_{2}}=\overline{z_{1} z_{2}}$ and f is real (so $f=\bar{f}$).

Fourier series: complex to real

Assuming that f is real, we get $c_{-n}=\overline{c_{n}}$. Recall that

$$
\cos x=\frac{1}{2}\left(e^{i x}+e^{-i x}\right), \quad \sin x=-\frac{i}{2}\left(e^{i x}-e^{-i x}\right)
$$

Now pair up $+n$ and $-n$ terms and write c_{n} as

$$
c_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right) .
$$

Then

$$
\begin{aligned}
f(x) & =c_{0}+\sum_{n=1}^{\infty}\left(c_{n} e^{i n x}+\overline{c_{n}} e^{-i n x}\right) \\
\Longrightarrow f(x) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
\end{aligned}
$$

This is the real form of the Fourier series.
We use this idea often to convert between...

- ...the complex form (more elegant, convenient)
- ...the real form (often more meaningful for results)

From (continuous) Fourier series to the discrete...

Fourier series: orthogonality

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}, \quad c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x
$$

Why is this formula true? The key is that the functions $e^{i n x}$ are an orthogonal basis (in the linear algebra sense). It is true that

$$
\int_{0}^{2 \pi} e^{i m x} e^{-i n x} d x= \begin{cases}2 \pi & m=n \\ 0 & m \neq n\end{cases}
$$

Define the 'inner product' (by analogy to the dot product)

$$
\langle f, g\rangle=\int_{0}^{2 \pi} f(x) \overline{g(x)} d x \quad\left(\text { like } \vec{x} \cdot \vec{y}=\sum_{k=1}^{n} x_{k} \overline{y_{k}}\right)
$$

Then the functions $e^{i n x}$ are 'orthogonal':

$$
\left\langle e^{i m x}, e^{i n x}\right\rangle=0 \text { form } \neq n
$$

Fourier series: orthogonality

Now we can see how the coefficient formula works:

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}, \quad c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x
$$

Take the inner product of the Fourier series with one of the exponentials:

$$
\begin{aligned}
\left\langle f, e^{i m x}\right\rangle & =\sum_{n=-\infty}^{\infty} c_{n} \int_{0}^{2 \pi} e^{i n x} e^{-i m x} d x \\
& =\sum_{n=-\infty}^{\infty} c_{n}\left(\left\{\begin{array}{ll}
2 \pi & m=n \\
0 & m \neq n
\end{array}\right)\right. \\
& =2 \pi c_{m}
\end{aligned}
$$

This means that the coefficient c_{m} depends only on the $e^{i m x}$ part (the 'components' of the series do not overlap, like perpendicular vectors)

But enough theory; here we are looking to compute transforms...

Discrete Fourier transform: context

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}, \quad c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x
$$

How do we get a computational version of the Fourier series?

- We can approximate the integrals for c_{n}
- We need a 'discrete' version of orthogonality

To get there, pick N and consider using grid points ('samples')

$$
x_{j}=2 \pi j / N, \quad j=0,1, \cdots, N-1 .
$$

Now use the trapezoidal rule to approximate c_{n} :

$$
c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) e^{-i n x} d x \approx \frac{1}{2 \pi} \cdot \frac{2 \pi}{N}\left(\frac{1}{2} f(0)+\sum_{k=1}^{N-1} f\left(x_{k}\right) e^{-i n x_{k}}+\frac{1}{2} f(2 \pi)\right)
$$

The endpoints are a problem - but if f has period 2π then $f(0)=f(2 \pi)$ and

$$
c_{n} \approx \frac{1}{N} \sum_{k=0}^{N} f\left(x_{k}\right) e^{-i n x_{k}}
$$

This is the basis of the discrete Fourier transform.

Discrete Fourier transform: definition

Now let's define the discrete transform. As an example, consider the 'signal'

$$
f(x)=2 \cos 2 x+6 \sin x, \quad x \in[0,2 \pi]
$$

and suppose we have samples of f at the (standard) sample points:

$$
f_{j}=f\left(x_{j}\right) \text { is known }, \quad x_{j}=2 \pi j / N, \quad j=0,1, \cdots, N-1 .
$$

We want to identify the frequencies (2 and 1) and amplitudes (2 and 6).

Key observation: orthogonality

For functions sampled at the x_{j} 's, define the 'dot product'

$$
\langle f, g\rangle_{d}=\sum_{j=0}^{N-1} f\left(x_{j}\right) \overline{g\left(x_{j}\right)}
$$

i.e. the dot product of f and g at the sample points. Then the $e^{i n x}$'s are orthogonal in this dot product, i.e.

$$
\left\langle e^{i m x}, e^{i n x}\right\rangle_{d}=\sum_{j=0}^{N-1} e^{i m x_{j}} e^{-i n x_{j}}= \begin{cases}0 & m \neq n \\ N & m=n\end{cases}
$$

Discrete Fourier transform: definition

Definition:

The Discrete Fourier transform (DFT) of a vector $\vec{f}=\left(f_{0}, \cdots, f_{N-1}\right)$ is

$$
F_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} e^{-2 \pi i k j / N}=\frac{1}{N}\left\langle f, e^{i k x}\right\rangle_{d}
$$

which is also a vector \vec{F} of length N.
The inverse transform (IDFT) is given by

$$
f_{j}=\sum_{k=0}^{N-1} F_{k} e^{2 \pi i k j / N}
$$

Caution:

There are several slightly different ways to write this pair of formulas.

- The 'plus' and 'minus' exponentials ($e^{i k x}$ vs. $e^{-i k x}$) can be switched
- The product of the factors in front of the sum must be $1 / N$. You may see $1 / N, 1$ or $1,1 / N$ or $1 / \sqrt{N}, 1 / \sqrt{N}$ for the DFT/IDFT.
Always check documentation before using a DFT routine!

The discrete Fourier transform

Discrete Fourier transform: definition

Definition:

The Discrete Fourier transform (DFT) of a vector $\vec{f}=\left(f_{0}, \cdots, f_{N-1}\right)$ is

$$
F_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} e^{-2 \pi i k j / N}=\frac{1}{N}\left\langle f, e^{i k x}\right\rangle_{d}
$$

which is also a vector \vec{F} of length N.
The inverse transform (IDFT) is given by

$$
f_{j}=\sum_{k=0}^{N-1} F_{k} e^{2 \pi i k j / N}
$$

- We think of \vec{f} as coming from sampling data in $[0,2 \pi]$ at the sample points.
- Letting $\omega=e^{-2 \pi i / N}$, we can write the DFT/IDFT nicely as

$$
F_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} \omega^{j k}, \quad f_{j}=\sum_{k=0}^{N-1} F_{k} \omega^{-j k}
$$

A first example

The DFT $\left\{F_{k}\right\}$ gives amplitudes of frequencies in the signal. Example: consider

$$
f(x)=3 e^{i x}+5 e^{4 i x}
$$

Sample f with $N=8$ to get samples $\vec{f}=\left(f_{0}, f_{1} \cdots, f_{7}\right) \ldots$ then take the DFT:

$$
F_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} e^{-2 \pi i k j / N}
$$

By the discrete orthogonality rule, $F_{k} \neq 0$ only for $k=1, k=4$ so

$$
\vec{F}=(0,3,0,0,5,0,0,0)
$$

Selection

You can think of the DFT formula for the k-th component,

$$
\text { signal } \rightarrow \frac{1}{N}\left\langle\text { signal, } e^{i k x}\right\rangle_{d}
$$

as 'selecting' that frequency and returning its amplitude (or from linear algebra: projection...)

The DFT is then selecting each frequency to get the amplitudes at each and returning them as a vector. For instance, consider

$$
\begin{aligned}
f(x) & =2 \cos 2 x+6 \sin x \\
& =e^{2 i x}+e^{-2 i x}-3 i e^{i x}+3 i e^{-i x}
\end{aligned}
$$

with $N=6$. Letting $\phi_{k}(x)=e^{i k x}$, we get

$$
\begin{aligned}
& \left\langle f, \phi_{0}\right\rangle / N \rightarrow 0 \text { (not present!) } \\
& \left\langle f, \phi_{1}\right\rangle / N \rightarrow-3 i \\
& \left\langle f, \phi_{2}\right\rangle / N \rightarrow 1 \\
& \left\langle f, \phi_{3}\right\rangle / N \rightarrow 0 \text { (not present!) } \\
& \left\langle f, \phi_{4}\right\rangle / N \rightarrow 1 \\
& \left\langle f, \phi_{5}\right\rangle / N \rightarrow 3 i
\end{aligned}
$$

The complication: aliasing

It is important to know which frequencies are present in the DFT. This is subtle because the DFT only knows about the sample points.

- The exponentials in the DFT are

$$
e^{0 x}, e^{i x}, \cdots, e^{i(N-1) x}
$$

- Notice that at any sample point, by Euler's formula

$$
e^{i N x_{j}}=e^{i N(2 \pi j / N)}=\left(e^{2 \pi i}\right)^{j}=1
$$

We can use this to 'shift' exponentials in the DFT for free:

$$
e^{-i k x_{j}}=e^{i N x_{j}} e^{-i k x_{j}}=e^{i(N-k) x_{j}}
$$

Thus, the DFT 'sees' frequency $-k$ as $N-k$.

- Similarly, $k+N, k+2 N, \cdots$, are all seen as k
- This effect is called aliasing

Aliasing

Consider sampling

$$
f(x)=\cos 2 x+2 \sin 4 x
$$

From Euler's formula,

$$
\cos 2 x=\frac{1}{2} e^{2 i x}+\frac{1}{2} e^{-2 i x}, \quad \sin x=-\frac{i}{2}\left(e^{4 i x}-e^{-4 i x}\right)
$$

Thus the frequencies present are ± 2 and ± 1.
The DFT with $N=10$ does what we want:

Real part: $1 / 2$ and 2 and $-2+10=8$
Imag part: $-1 / 2$ and 4 and $1 / 2$ at $-4+10=6$

Aliasing

Consider sampling

$$
f(x)=\cos 2 x+2 \sin 4 x
$$

However, $N=6$ is not enough samples!

Real part: $1 / 2$ and 2 and $-2+6=4$ (okay)
Imag part: $-1 / 2$ and 4 and $1 / 2$ at $-4+6=2$ (bad!)
This data does not distinguish $f(x)$ from

$$
\tilde{f}(x)=\cos 2 x-2 \sin 2 x
$$

Sampling

To fit all the frequencies, we need to take

$$
N>2 \max (\text { frequencies in signal })
$$

which is called the Nyquist rate.
Otherwise, the sampling is too slow to 'see' the higher frequency parts.
(Example: filming a spinning wheel... the 'wagon-wheel effect')

Shifting frequencies

The fact that the $-k$ frequencies go to $N-k$ suggests that

$$
k=0,1, \cdots, N-1
$$

are wrong for real signals: we need matched + and - parts. Instead:

$$
\text { freqs }=-\frac{N}{2}, \frac{N}{2}+1, \cdots,-1,0 \cdots, \frac{N}{2}-1
$$

are the right frequencies.
We can also shift the k 's by $N / 2$ to get

$$
\text { freqs }_{\text {shifted }}=-N / 2,-N / 2+1, \cdots,-1,0,1 \cdots N / 2-1
$$

The transform \vec{F} must then be shifted the same way to line up with the k 's...

$$
\begin{aligned}
\vec{F} & =F_{0}, F_{1}, \cdots, F_{N / 2-1}, F_{N / 2}, F_{N / 2+1} \cdots F_{N-1} \\
\Longrightarrow \vec{F}_{\text {shifted }} & =F_{N / 2}, F_{N / 2+1} \cdots, F_{N-1}, \quad F_{0}, F_{1}, \cdots F_{N / 2-1}
\end{aligned}
$$

The shifted freq vector will have freq $[\mathrm{N} / / 2]=0$ (the 'center' point).

Shifting frequencies

An example - take $N=6 \ldots$
The DFT yields

$$
\left\{\begin{array}{l}
F_{0}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5} \\
0,1,2,3,4,5
\end{array}\right.
$$

The true frequencies (assuming a real signal) are:

$$
\left\{\begin{array}{l}
F_{0}, F_{1}, F_{2}, F_{3}, F_{4}, F_{5} \\
0,1,2,-3,-2,-1
\end{array}\right.
$$

After shifting, the result is

$$
\left\{\begin{array}{l}
F_{3}, F_{4}, F_{5}, F_{0}, F_{1}, F_{2} \\
-3,-2,-1,0,1,2
\end{array}\right.
$$

- In python, this is done using two functions fftfreq and fftshift
- You could place $N / 2$ on either end (e.g. +3 or -3)
- (check the convention in your code carefully; python uses $-N / 2$)

Shifting frequencies: example

For $N=10 f(x)=\cos 2 x+2 \sin 4 x$, the DFT uses the frequencies

$$
\begin{aligned}
k & =0,1,2,3,4,5,6,7,8,9,10 \\
k_{\text {shifted }} & =-5,-4,-3,-2,-1,0,1,2,3,4
\end{aligned}
$$

Computation: the Fast fourier transform

Implementation...

Now let's view the formulas just as 'sums to compute':

$$
\text { DFT: } F_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f_{j} e^{-2 \pi i k j / N}, \quad \text { IDFT: } f_{j}=\sum_{k=0}^{N-1} F_{k} e^{2 \pi i k j / N}
$$

First note that the IDFT is actually a DFT. Taking the conjugate:

$$
\overline{\operatorname{IDFT}(\vec{F})_{j}}=\sum_{j=0}^{N-1} \overline{F_{k}} e^{-2 \pi i k j / N}
$$

which is just the DFT of $\overline{F_{k}}$ (up to the $1 / N$ factor).
Thus we only need a way to compute the DFT.
The slow method: Brute force - just compute the sum directly. How many operations $(O(\cdots))$ are required?

Answer: $O\left(N^{2}\right)$.
This seems okay, but we can do much better...

Implementation...

$$
\text { DFT: } \quad F_{k}=\sum_{j=0}^{N-1} f_{j} \omega^{j k}, \quad \omega=e^{-2 \pi i / N}
$$

The trick: divide and conquer! Example: let $N=8$ and $\omega=e^{-2 \pi i / 8}$. Then

$$
\begin{aligned}
F_{k} & =\operatorname{DFT}\left(f_{0}, \cdots, f_{7}\right)_{k} \\
& =\frac{1}{N} \sum_{j=0}^{8} f_{j} \omega^{j k}, \quad k=0, \cdots, 7 \\
& =\frac{1}{N}\left(f_{0}+f_{2} \omega^{2 k}+f_{4} \omega^{4 k}+f_{6} \omega^{6 k}\right)+\frac{1}{N} \omega^{k}\left(f_{1}+f_{3} \omega^{2 k}+f_{5} \omega^{4 k}+f_{7} \omega^{6 k}\right) \\
& =\frac{1}{2} \frac{2}{N}\left(f_{0}+f_{2} \xi^{k}+f_{4} \xi^{2 k}+f_{6} \xi^{3 k}\right)+\frac{1}{2} \omega^{k} \frac{2}{N}\left(f_{1}+f_{3} \xi^{k}+f_{5} \xi^{2 k}+f_{7} \xi^{3 k}\right)
\end{aligned}
$$

where $\xi=\omega^{2}$. But $\xi=e^{-2 \pi i / 4}$. which is the 'omega' for $N=4 \ldots$.
Thus both sums in parentheses are DFT's for $N=4$! We then have

$$
F_{k}=\frac{1}{2} \operatorname{DFT}\left(f_{0}, f_{2}, f_{4}, f_{6}\right)_{k}+\frac{1}{2} \omega^{k} \operatorname{DFT}\left(f_{1}, f_{3}, f_{5}, f_{7}\right)_{k} . \quad k=0, \cdots, 7
$$

Note: on the right side, k is taken 'mod 4' in the subscripts (4,5 are 0,1 , etc.).

The fast Fourier transform

More generally, suppose N is a power of 2. Then

$$
\begin{gather*}
\operatorname{DFT}\left(f_{0}, f_{1}, \cdots, f_{N-1}\right)= \\
\frac{1}{2} \operatorname{DFT}\left(f_{0}, f_{2}, \cdots, f_{N-2}\right)+\frac{1}{2} \omega^{k} \operatorname{DFT}\left(f_{1}, f_{3}, \cdots, f_{N-1}\right) \tag{F}
\end{gather*}
$$

Thus the DFT can be computed as follows:

- Split the vector into two half-sized vectors: odds and evens
- Take the DFT of the odd and even parts (recursively)
- Combine them according to the formula (F).

This is the basis of the fast Fourier transform (FFT).
Why 'fast'? Suppose $N=2^{p}$ and let $C(N)$ be the cost of the transform. Then - just as we saw for mergesort,

$$
\begin{gathered}
C(N)=a N+2 C(N / 2) \\
\Longrightarrow C(N)=a N+2 a(N / 2)+4 a(N / 4)+\cdots=p a N
\end{gathered}
$$

It follows that the FFT requires $O(N \log N)$ operations!

The fast Fourier transform

- This is much faster than the slow $O\left(N^{2}\right)$ method.
- For $N=10^{4}$, the slow method is $\approx 10^{4} / \log _{2}\left(10^{4}\right) \approx 750$ times slower!
- The FFT is one of the most important algorithms of the twentieth century essential for signal processing, data analysis...
- First version usually credited to Cooley \& Tukey (1965) (Side note: was known to Gauss in the 1800s...)

There are more details to making the FFT work (the messy part):

- What if N is not a power of 2 ?
- What is the right base case? (Answer: 'small' cases like $N=3 \ldots$)
- How do we un-recursion it? (Answer: some clever encoding, plus a stack...)

Scientific computing packages will have an fft available In numpy: numpy.fft has all the FFT features.

The fast Fourier transform: python

A quick tour of numpy.fft....

- FFT/IFFT: $\mathrm{fft}(\mathrm{x})$ and $\operatorname{ifft(x)}$ (convention: $1 / N$ on IFFT)

```
\(\mathrm{n}=6\)
\(\mathrm{t}=\mathrm{np} .1 \mathrm{inspace}(0,2 * n \mathrm{p} . \mathrm{pi}, \mathrm{n}\), endpoint=False) \# 0, pi/6, ... 5pi/6
\(\mathrm{d}=2 * \mathrm{np} \cdot \mathrm{pi} / \mathrm{n} \#\) sample spacing
samples \(=\) some_function( \(t\) )
\(c=f f t . f f t(s a m p l e s)\)
freq \(=\mathrm{fft} . \mathrm{fftfreq}(\mathrm{n}, \mathrm{d})\) \#[0,1,2,-3,-2,-1]/(2*pi)
freq \(=\) fft.fftshift(freq) \# now \([-3,-2,-1,0,1,2] /(2 * p i)\)
\(\mathrm{c}=\mathrm{fft} . \mathrm{fftshift}(\mathrm{c})\) \# now c is shifted the same way
```

- $\operatorname{ifft}(f f t(x) \approx x$ [up to rounding]
- fftfreq (n, d) gets the 'frequencies' for the length N FFT.
- d is the sample spacing L / N (for samples in $[0, L]$)
- If d is in seconds, then the freqs. are in cycles/second (Hz).
-This in the original order (not shifted). If N is even:

$$
\text { fftfreq }(N)=[0,1,2, \cdots N / 2-1,-N / 2,-N / 2+1, \cdots-1] / L
$$

- fftshift(v) centers the data (as discussed)

A practical example: filtering

FFT: physical units

It's worth clarifying the issue of units for frequency...
If we sample N values from $t=0$ to $t=L$ seconds, the values $k=0, \pm 1, \cdots$ correspond to k / L cycles per second $(H z)$.

To see this, look at the DFT with N samples on an interval $[0, L] \ldots$

$$
\begin{aligned}
F_{k} & =\frac{1}{N} \sum_{j=0}^{N-1} f\left(x_{j}\right) e^{-2 \pi i k j / N} \\
& =\frac{1}{N} \sum_{j=0}^{N-1} f\left(x_{j}\right) e^{-(2 \pi i k / L)(L j / N)} \\
& =\frac{1}{N}\left\langle f, e^{2 \pi i k x / L}\right\rangle_{d}, \quad\langle f, g\rangle=\sum_{j=0}^{N-1} f\left(x_{j}\right) g\left(x_{j}\right) .
\end{aligned}
$$

Conclusion: the frequencies for this DFT are $2 \pi k / L(\mathrm{rad} / \mathrm{s})$ or k / L (cycles $/ \mathrm{s}$).

FFT: physical units - interpretation

Again, suppose we sample N values from $t=0$ to $t=L$ time.

The fundamental frequency

$$
\omega_{0}=1 / L \text { cycles } / \text { time }=2 \pi / L \text { rad. } / \text { time }
$$

is the lowest frequency ω such that $e^{i \omega t}$ is periodic.
The other frequencies are multiples of the fundamental one.

$$
\omega=\omega_{0}
$$

$$
\omega=2 \omega_{0}
$$

- For a Fourier series

$$
f=\sum_{n} c_{n} e^{i \omega_{n} x}
$$

frequencies are an infinite sequence (enough to represent f).

- For the DFT, frequencies go up to $N / 2 L$, and higher ones are aliased

FFT: physical units - interpretation

Yet another intuition for the scaling with $L \ldots$
Consider a sound wave sampled in $[[0, L]$ with N samples; the frequencies are

$$
\frac{1}{L}, \quad \cdots \frac{N}{2 L}
$$

Now play the sound in double speed, taking N samples again (interval:
$[0, L / 2])$. The frequencies are:

$$
2 \cdot \frac{1}{L}, \quad \cdots 2 \cdot \frac{N}{2 L} .
$$

This matches what you know of sound!

FFT: physical units

Example: Consider the 'pure' middle-C tone

$$
f(t)=\sin (524 \pi t), \quad \text { frequency }=262 \mathrm{~Hz}
$$

Sample $N=1024$ points in the interval $[0,1]$ and take the DFT. Then

$$
F_{k}=\frac{1}{N} \sum_{j=0}^{N-1} f\left(x_{j}\right) e^{-2 \pi i k j}=\frac{1}{N}\left\langle f, e^{2 \pi i k x}\right\rangle_{d}
$$

The set $\left\{e^{2 \pi i k x}\right\}$ is orthogonal in the inner product and

$$
f(t)=-\frac{i}{2} e^{262 \cdot 2 \pi i t}+\frac{i}{2} e^{-262 \cdot 2 \pi i t}
$$

Thus, the DFT selects the right frequencies, and we get

$$
F_{262}=-\frac{i}{2}, \quad F_{-262+N}=\frac{i}{2}, \quad F_{k}=0 \text { otherwise }
$$

corresponding to the frequency $262 / L=262 \mathrm{~Hz}$.

An example: low pass filter

Now let's look at a real example. Let's construct a low pass filter, which removes all frequencies above a cutoff value $f_{c}(\mathrm{~Hz})$ in the signal.

Info on the signal:

- Over a time $[0, L]$ with a sample rate $r=44100 \mathrm{~Hz}$ (the wav standard)
- The real frequencies are related to k by freq $[k]=k / L$
- Spacing between samples: $1 / r$ seconds

The algorithm:

1) Load an audio file (data) (here a .wav, using scipy.io.wavfile)
2) Compute the FFT, df, and associated dimensional frequencies freq (Hz)
3) et $\mathrm{df}[\mathrm{k}]$ to zero for all k 's with \mid freq $[k] \mid>f_{c}$.
4) Inverse transform with the IFFT, save the result as a wav!

In short: transform, then filter, then inverse transform back.

An example: low pass filter

The algorithm:

- Load an audio file (data) (here a .wav, using scipy.io.wavfile)
- Compute the FFT, df, and associated dimensional frequencies freq (Hz)
- Set $d f[k]$ to zero for all k 's with $|f r e q[k]|>f_{c}$.
- Inverse transform with the IFFT, save the result as a wav!

Note: We plot the power spectrum: $\left|F_{k}\right|$ vs. freq. for the 'positive' k 's.
(Why not also plot F_{k} for the 'negative' k 's?)

Convolutions

An important operation in mathematics is the convolution

$$
(f * g)(x)=\int_{-\infty}^{\infty} f(y) g(x-y) d y
$$

for functions f, g defined for real numbers.

Often, g is a 'window' that slides by the graph of f, picking out a part of f weighted by some shape.

Example: f and g are boxes, $H=1 \ldots$

Convolutions

For periodic functions with period 2π, we instead use

$$
(f * g)(x)=\int_{0}^{2 \pi} f(y) g(x-y) d y
$$

We can think of the argument $x-y$ as periodic, so it 'wraps around' the interval $[0,2 \pi]$ (e.g. $-\pi / 2$ is $3 \pi / 2$).

The discrete analogue is the circular convolution

$$
(\vec{f} * \vec{g})_{j}=\sum_{m=0}^{N-1} f_{m} g_{j-m}
$$

where subscripts are taken 'with period N ' (so -1 is $N-1$ and so on).

Theorem (convolution and DFT)

The DFT of a convolution is the element-wise product of the DFTs...

$$
\operatorname{DFT}(\vec{f} * \vec{g})_{k}=\operatorname{DFT}(F)_{k} \operatorname{DFT}(G)_{k}
$$

(Proof: a direct computation...)

Convolutions

Theorem

The DFT of a convolution is the element-wise product of the DFTs...

$$
\operatorname{DFT}(\vec{f} * \vec{g})_{k}=\operatorname{DFT}(F)_{k} \operatorname{DFT}(G)_{k}
$$

- Thus 'pointwise' multiplication of frequencies is convolution in real space
- Convolutions, like the DFT, are $O(N \log N)\left(\operatorname{not} O\left(N^{2}\right)\right)$!
- 'Filters' (like low pass, etc.) are convolutions in real space

Example: consider the DFT in $[0,2 \pi]$ with spacing $h=2 \pi / N$ and

$$
\begin{gathered}
\vec{g}=\left[-\frac{1}{h}, \frac{1}{h}, 0,0, \cdots\right] . \\
F_{1}=f_{0} g_{1}+f_{1} g_{0}+\cdots=\frac{f\left(x_{1}\right)-f\left(x_{1}-h\right)}{h} \approx f^{\prime}\left(x_{1}\right) \\
F_{2}=f_{0} g_{2}+f_{1} g_{1}+f_{2} g_{0}+\cdots=\frac{f\left(x_{2}\right)-f\left(x_{2}-h\right)}{h} \approx f^{\prime}\left(x_{2}\right) \\
F_{j}=\text { zeros }+f_{j-1} g_{1}+f_{j} g_{0}+\text { zeros }=\frac{f\left(x_{j}\right)-f\left(x_{j}-h\right)}{h} \approx f^{\prime}\left(x_{j}\right)
\end{gathered}
$$

so the convolution gives the backward difference approximation to $f^{\prime}(x)$!

A few more notes on the Fourier transform

More on the Fourier transform

A power spectrum plot shows $\left|F_{k}\right|$ vs. frequency (or k). For this,

$$
f(t)=\sin t, g(t)=\cos t \quad \text { have the same } F_{k}
$$

We can also plot the 'angle' or 'phase' of F, i.e.

$$
F_{k}=r_{k} e^{i \theta_{k}}, \Longrightarrow \quad \text { plot } r_{k} \text { vs. } k, \text { plot } \theta_{k} \text { vs. } k .
$$

Observe that $\theta= \pm 1$ corresponds to pure cosines, and $\theta= \pm \frac{\pi}{2}$ to pure sines.

$$
f(t)=4 \cos t+2 \sin 2 t, \quad F=(2,-i, 0, \cdots, 0, i, 2)
$$

cosine: $2 e^{i t} \Longrightarrow \arg =0, \quad$ sine: $-i e^{2 i t}=e^{-i \pi / 2} e^{2 i t} \Longrightarrow \arg =-\pi / 2$

More on the Fourier transform

More generally, suppose we translate ('phase shift') the signal...

$$
\sin 2 t \Longrightarrow \sin 2(t-\phi)=\cos 2 \phi \sin 2 t-\sin 2 \phi \cos 2 t
$$

The magnitude is $1 / 2$ - which shows up in the plot of $|F|$. Since

$$
\sin 2(t-\phi)=-\frac{i}{2}\left(e^{-2 i \phi} e^{2 i t}-e^{2 i \phi} e^{-2 i t}\right)
$$

ϕ shows up in the phase plot ($\mp 2 \phi$ at \pm frequencies).
This means that the frequency k may show up as a mix of sines and cosines.
\sin vs. cos depends on the starting point of the sampling (shift in t).

More on the Fourier transform

Example: $f(t)=\sin (2 t)$ shifted by $\pi / 8$ (so $f(t-\pi / 8)=\sin (2(t-\pi / 8)$):

Bonus application: multiplying numbers

Recall that we also define the circular convolution

$$
\left(\vec{f} *_{c} \vec{g}\right)_{k}=\sum_{j=0}^{N-1} f_{j} g_{k-j}
$$

Observe that the periodic nature is avoided if the data is 'padded'.
Claim: If

$$
f_{j}=g_{j}=0 \text { for } j>N / 2
$$

(or a similar padding scheme) then

$$
\left(\vec{f} *_{c} \vec{g}\right)_{k}=\sum_{j=0}^{N-1} f_{j} g_{k-j}=\sum_{j=0}^{k} f_{j} g_{k-j}
$$

That is, if only half the vectors are filled, they don't interact when 'looped'.

Details to check:

- If $j>N / 2$ then $f_{j}=0 \Longrightarrow$ zero term.
- If $0<j<N / 2$ and $k-j<0$ then $k-j$ becomes $>N / 2 \Longrightarrow g_{k-j}=0$.

Thus the sum ' $\bmod N$ ' is just a regular sum (no negative indices!).

Bonus application: multiplying numbers

Thus, with enough padding, we can use the circular convolution to compute

$$
(\vec{f} * \vec{g})_{k}=\sum_{j=-\infty}^{\infty} f_{j} g_{k-j}
$$

if \vec{f}, \vec{g} have finitely many non-zero entries, or the variant

$$
(\vec{f} * \vec{g})_{k}=\sum_{j=0}^{k} f_{j} g_{k-j}
$$

for length N vectors (all the same thing, but using slight variations)...
That is: with enough padding, the 'boundary' interactions don't matter.

Bonus application: multiplying numbers

Now why does this matter? We saw that for the FFT,

$$
\mathrm{fft}\left(\vec{f} *_{c} \vec{g}\right)_{k}=F_{k} G_{k}, \quad F=\mathrm{fft}(\vec{f}), G=\mathrm{fft}(\vec{g})
$$

The FFT of the convolution is the (element-wise) product of each FFT.
Thus, to compute the circular or other convolution, we can

- Setup:
-Identify vectors \vec{f}, \vec{g} with all the non-zero data
-Pad the vectors with extra zeros as needed
- FFT part:
- Take the FFT of the padded vectors to get F and G
-Compute the (trivial) product $F_{k} G_{k}$
-Take the IFFT to get the convolution
(For the circular convolution, just skip to the FFT part) ('Fourier's law')

Bonus application: multiplying numbers

Suppose I want to compute the product of two n digit numbers with digits

$$
c_{n-1}, \cdots c_{0}, \quad d_{n-1}, \cdots d_{0}
$$

Then the numbers are

$$
c=\sum_{j=0}^{n-1} c_{j} 10^{j}, \quad d=\sum_{j=0}^{n-1} d_{j} 10^{j}
$$

Taking the product $c d$, we see that

$$
\left(c_{j} 10^{j}\right) \cdot d_{k-j} 10^{k-j} \text { goes to the } 10^{k} \text { term of } c d
$$

which accounts for all the terms (once multiplied out), and so

$$
c d=\sum_{k=0}^{2 n} a_{k} 10^{k}, \quad a_{k}=\sum_{j=0}^{k} c_{j} d_{k-j}
$$

although the a_{k} 's here are not digits. For instance, for $123 \times 45=5535$,

$$
\begin{gathered}
c=1 \times 10^{2}+2 \times 10^{1}+3, \quad d=4 \times 10^{1}+5 \\
a_{0}=3 \cdot 5, \quad a_{1}=3 \cdot 4+2 \cdot 5, \quad a_{2}=1 \cdot 5+2 \cdot 4, \quad a_{3}=1 \cdot 4 \\
15+22 \cdot 10+13 \cdot 100+4 \cdot 1000=5535
\end{gathered}
$$

Bonus application: multiplying numbers

So, for numbers,

$$
c=\sum_{j=0}^{n-1} c_{j} 10^{j}, \quad d=\sum_{j=0}^{n-1} d_{j} 10^{j}
$$

we have that

$$
c d=\sum_{k=0}^{2 n} a_{k} 10^{k}, \quad a_{k}=\sum_{j=0}^{k} c_{j} d_{k-j}
$$

which means $c d$ can be computed from the circular convolution

$$
\vec{a}=\vec{c} *_{c} \vec{d}
$$

where \vec{c} and \vec{d} are padded enough.
Example:

$$
\begin{gathered}
c=1 \times 10^{2}+2 \times 10^{1}+3, \quad d=4 \times 10^{1}+5, \\
\vec{c}=(3,2,1,0,0), \quad \vec{d}=(5,4,0,0,0) \\
a_{2}=(\vec{c} * \vec{d})_{2}=c_{0} d_{2}+c_{1} d_{1}+c_{2} d_{0}+c_{3} d_{4}+c_{4} d_{3}
\end{gathered}
$$

'periodic' terms vanish (red), and $a_{2}=3 \cdot 0+2 \cdot 4+1 \cdot 5=13$.

Bonus application: multiplying numbers

$$
c d=\sum_{k=0}^{2 n} a_{k} 10^{k}, \quad a_{k}=\sum_{j=0}^{k} c_{j} d_{k-j}
$$

This gives a strange way to find $c d$:

Multiplication by FFT

Let c, d be n-digit integers. To compute $c d$, we can...

- Construct vectors \vec{c}, \vec{d} of their digits, padded with zeros $(N=2 n)$
- Take the FFT of \vec{c} nad \vec{d} to get C, D
- Compute CD and then IFFT
- the non-zero entries are then the coefficients a_{k}
- Finally, compute $\sum_{k=0}^{2 n} a_{k} 10^{k}$, round to an integer
- The 'by hand' way: $O\left(n^{2}\right)$ operations
- This way: $O(n \log n)$ operations (sort of)!
- Unfortunate fact: this isn't really worth it except for very large n, plus rounding issues (and there are other ways to deal with large numbers...)

