Searching the internet:
PageRank and Markov chains
Graphs

Websites linked to https://www.mathworks.com

- A **graph** is a set of **vertices** V connected by edges.
- The ‘neighbors’ of v are the vertices linked from v
- The ‘edge set’ E is the set of pairs (v, w) (edges from $v \in V$ to $w \in V$)
- a **directed graph** distinguishes between edges from $v \rightarrow w$ and $w \rightarrow v$
 (e.g. links *from* web-pages)

Key question: how do we represent a graph in code?
First, number the vertices $0, \cdots, N - 1$. Then...

Option 1: Just list the edges...
- Create a list of edges (v_i, v_j) (tuples)
- Not very efficient!

```python
# directed example:
edges = [[1,2],
        [2,1],
        [2,0],
        [0,1],
        [0,3]]
```

Option 2: Create an adjacency list
- Map k to neighbors of v_k
- Fast to look up all neighbors of v
- Just a list of ‘lists of neighbors’

```python
# directed example:
adj_list = [[1,3], # 0 -> 1, 3
            [2],   # 1 -> 2
            [0,1],
            []]

adj_list[0] # neighbors of vert. 0
Another representation is the **adjacency matrix** $A$:

$$a_{ij} = \begin{cases} 1 & \text{if } v_i \text{ links to } v_j \\ 0 & \text{otherwise} \end{cases}$$

Adjacency matrices for the two graphs above:

$$A_1 = \begin{bmatrix} 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \quad A_2 = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

e.g. first row of $A_1 \implies v_0$ linked to $1, 2, 3$ (not $0$ or $4$)

- Important matrix in graph theory!
- Typically sparse (mostly zeros)
- The adjacency list gives the non-zero entries in each row of $A$
A **weighted graph** associates a number $w_{ij}$ to each edge $v_i \rightarrow v_j$.

- e.g. cities connected by roads, weight = length of road
- We can keep track of this along with the adjacency matrix/list

A **weighted adjacency matrix** has the weight $w_{ij}$ in the $(i,j)$ entry, e.g.

Now onto the object of interest here...
Discrete Markov chains

Consider a bee flying through a house with three rooms.
- Label the rooms 0, 1, 2; you also open a window to the outside (room 3).
- The bee moves from one room to another at random each minute.
- It chooses to go from room \( r_i \to r_j \) with probability \( p_{ij} \).

We can represent this process with a weighted directed graph, e.g.

\[
P = \begin{bmatrix}
0.5 & 0.4 & 0 & 0.1 \\
0 & 0.5 & 0.5 & 0 \\
0.7 & 0.3 & 0 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

- The matrix \( P \) is the **transition matrix** - it describes the probability of transitioning from one place to the next.
- A process of this type is called a *(discrete)* Markov chain.
Discrete Markov chains

\[
P = \begin{bmatrix}
0.5 & 0.4 & 0 & 0.1 \\
0 & 0.5 & 0.5 & 0 \\
0.7 & 0.3 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

- It's easy to simulate directly given the adjacency list
- Suppose we have the adjacency list `adj` and a probability list `probs` so that, e.g. `adj[0] \rightarrow [0,1,3]` and `probs[0] \rightarrow [0.5, 0.4, 0.1]`)

```python
while pos != 3: # (while not free)
 r = random.uniform(0, 1)
 p = probs[pos] # get list of transition probs.
 k = 0
 total = p[0]
 while r > total:
 k += 1
 total += p[k]
 pos = adj[pos][k] # go to selected neighbor
```

Generate \( x \in (0, 1) \), check if \( x > p[0] \), then \( p[0] < x < p[0] + p[1] \) and so on.
For more on the ‘escape time’ for the bee, see a probability course...
Let’s now consider a variant. Suppose the window is closed...

This Markov chain is called **recurrent** - the bee will wander in the chain forever.

- The key question: After a long time, what is the probability $s_j$ that the bee will be in room $j$?
- This is independent of the bee’s starting position
- Call this the ‘stationary distribution’ $s$. 

\[ P = \begin{bmatrix}
0.5 & 0.5 & 0 \\
0 & 0.5 & 0.5 \\
0.7 & 0.3 & 0
\end{bmatrix} \]
A nice probability argument gives us a formula. Let

\[ s_j = \text{probability the bee is in room } j \text{ after a long time} \]

and let \( p_{ij} \) be the transition probability for \( i \rightarrow j \).

- If the bee is in room \( j \), it must have come from room \( i \), so

\[
\text{prob(bee in room } j) = \sum_i \text{prob(bee in room } i \text{ the step before)} \cdot p_{ij}
\]

- But after a long time, the LHS is just \( s_j \) and the prob in the sum is \( s_i \), so

\[
s_j = \sum_i s_i p_{ij}.
\]

In matrix form, the result is that

\[
s = P^T s.
\]

That is, \( s \) is an eigenvector of \( P^T \) with eigenvalue 1.
To summarize the main result...

- Let $P$ be the transition matrix for a recurrent Markov chain
  - $p_{ij}$ is the probability to transition from $i \rightarrow j$
  - There are no ‘dead ends’: any vertex can be reached from any other

- Let $s_j$ be the probability to be in vertex $j$ after a long time (as a vector: $s$)

Then the vector $s$ (the stationary distribution) is given by

\[ P^T s = s \]

i.e. an e-vector of $P^T$ with e-value 1. Often we write $s$ as a row vector, so

\[ s = sP. \]

**Theorem**

A special case of the Perron-Frobenius theorem says that

- $\lambda = 1$ is the largest eigenvalue of $P^T$
- The eigenvector is unique (if scaled so that $\sum = 1$)

To find $s$, we **solve an eigenvalue problem** for the largest eigenvalue of $P^T$. 
Discrete Markov chains

\[ P = \begin{bmatrix} 0.5 & 0.5 & 0 \\ 0.5 & 0.0 & 0.5 \\ 0.7 & 0.3 & 0 \end{bmatrix} \]

\[ P^T = \begin{bmatrix} 0.5 & 0.5 & 0.7 \\ 0.5 & 0.0 & 0.3 \\ 0.0 & 0.5 & 0 \end{bmatrix} \]

Eigenvalues of \( P^T \) are 1 and \((-5 \pm i \sqrt{15})/20\) (not needed)

The eigenvector \( \lambda = 1 \) is \( s = (0.531, 0.31, 0.16) \) (scale so \( \sum = 1 \))

\[ P^T s = s \]

\[
\begin{bmatrix} 0.5 & 0.5 & 0.7 \\ 0.5 & 0.0 & 0.3 \\ 0.0 & 0.5 & 0 \end{bmatrix} \begin{bmatrix} 0.531 \\ 0.31 \\ 0.16 \end{bmatrix} = \begin{bmatrix} 0.531 \\ 0.31 \\ 0.16 \end{bmatrix}
\]

so if you want to avoid the bee, you should be in room 2.

We really need a better way to find the eigenvector!
The power method

The goal is to find the largest eigenvalue (in magnitude) of an \( n \times n \) matrix \( A \).

First, an example. Consider

\[
A = \begin{bmatrix} 3 & 1 \\ 0 & 2 \end{bmatrix}, \quad \lambda_1 = 3, \quad v_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad \lambda_2 = 2, \quad v_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}
\]

Suppose we pick a starting vector, say, \( x = (6, -1) \). In the eigenvector basis,

\[
x = 5v_1 + v_2.
\]

Now we repeatedly multiply by \( A \) on the left...

\[
A^k x = 5 \cdot (3^k v_1) + (2^k v_2)
\]

The first term grows fastest, so it follows that

\[
A^k x \sim 5 \cdot 3^k v_1 + \text{(smaller)}
\]

i.e. applying \( A \) repeatedly makes all but the \( v_1 \) term smaller and smaller.
The power method

Now for the general case... For simplicity, assume that:

- $A$ has $n$ eigenvalues with $|\lambda_1| > |\lambda_2| \geq \cdots \geq |\lambda_n|$
- $A$ has eigenvectors $v_1, \cdots, v_n$ that form a basis for $\mathbb{R}^n$

Pick any vector $x_0$ and consider the simple iteration

$$x_k = A x_{k-1}$$

Then

$$x_k = A^k x_0 = c_1 \lambda_1^k v_1 + \text{(smaller terms)}.$$

- We are free to rescale $x$ at each step so the first term stays the same size:

$$x_k = \frac{A x_{k-1}}{\|A x_{k-1}\|}$$

where $\|w\|$ is the magnitude of a vector: $\|w\| = \sqrt{w_1^2 + \cdots + w_n^2}$.

- After doing so, the result is

$$x_k \sim c v_1 + \text{(terms that go to zero)}.$$

where $c$ is such that $\|c v_1\| = 1$.

- To get the eigenvalue, see the next slide...
How do we get the eigenvalue? We want a ratio like

\[
\frac{x_{k+1}}{x_k} \sim \lambda_1
\]

but that doesn’t work since \(x_k\) is a vector. Instead:

- Pick a vector \(w\)
- Take a dot product with \(w\) to get a scalar
- Take the ratio of these dot products:

\[
r_k = \frac{w \cdot x_{k+1}}{w \cdot x_k}
\]

From the expression

\[
x_k \sim c_1 \lambda_1^k v_1
\]

we can show that the ratios \(r_k\) approach \(\lambda_1\).

A better choice (effectively \(w = x_k\)) is the Rayleigh quotient

\[
r_k = \frac{x_k \cdot (Ax_k)}{x_k \cdot x_k} \to \lambda_1 \text{ as } k \to \infty.
\]

Since we chose \(x_k\) to be a unit vector, the denominator vanishes, leaving

\[
r_k = x_k \cdot (Ax_k).
\]
The power method

To summarize: suppose $A$ is $n \times n$ with a largest eigenvalue $\lambda_1$ in magnitude. To find it and the eigenvector,

- Pick a random starting vector $x_0$
- Compute (with $\|w\| = \sqrt{w_1^2 + \cdots + w_n^2}$.) the iteration

\[ x_k = A x_{k-1} / \| A x_{k-1} \|, \quad r_k = x_k \cdot (A x_k) \]

Then $r_k \rightarrow \lambda_1$ and $x_k$ converges to an eigenvector of $\lambda_1$.

A simple python ‘sketch’:

```python
def power_method(a):
 n = a.nrows # number of rows
 x = # (set to random vector)
 while condition:
 q = multiply(A, x)
 r = dot_prod(x, q) # x^T A x
 x = q/norm(q) # normalize
 return x, r

def norm(x):
 return sqrt(sum((v**2 for v in x)))
```

Using numpy (sketch):

```python
def power_method(a):
 n = a.shape[0]
 x = #...set to random np.array
 while condition:
 q = np.dot(a, x)
 r = x.dot(q)
 x = q/sqrt(q.dot(q))
 return x, r
```

The ‘condition’ needs to be specified here: One can stop when the $r$ is close enough to converged (e.g. when $|r_k - r_{k-1}|$ is small enough).
Now back to Markov chains...

- We want to find the eigenvector for $\lambda_1 = 1$ of the matrix $A = P^T$
- $\lambda_1$ is known to be the largest

The fact that $\lambda_1 = 1$ makes life easier! We have

$$A^k x_0 \sim c_1 v_1 + \cdots \implies A^k x_0 \sim c_1 \lambda_1 + \text{(small)}.$$ 

To be safe, it may be important to ensure the ‘eigenvector’ is a vector of probabilities, i.e.

$$\|x_k\|_1 = 1 \text{ where } \|w\|_1 := \sum_{j=1}^{n} |w_j|.$$ 

This is satisfied if $\|x_0\|_1 = 1$, but rounding error may cause small deviations. Example code:

```python
def stationary(p, steps):
 n = a.shape[0]
 x = #...set to random np.array, pos. values
 x = x/sum(x) # normalize
 for it in range(steps):
 x = np.dot(a, x)
 x = x/sum(x) # to be safe...
 return x
```
Finally, we can apply this idea to a search engine.

Consider a set of $N$ web pages with (directed) links.
- Let $A$ be the adjacency matrix for this directed graph
- Not all nodes have to be reachable from all others!

We define a Markov process by imagining a ‘web surfer’:
- At each step, the surfer picks a link at random, all with equal probability
- Let $\ell_i$ denote the number of outgoing links from page $i$

The transition probabilities are then

$$p_{ij} = \frac{a_{ij}}{\ell_i}$$

and we must solve

$$P^T s = s.$$

This would be plugged into the power method.

But there’s a catch! The surfer needs somewhere to go if they get ‘stuck’ in a part of the graph with no links back.
A simple fix - add artificial links to all pages.

- The surfer goes to a random page with probability \(1 - \alpha\)
- Take \(\alpha\) to be near one (but not equal to one)

Then the modified transition probability is

\[
\tilde{p}_{ij} = \alpha \frac{a_{ij}}{\ell_i} + \frac{1 - \alpha}{N}.
\]

Thus we must solve

\[Ms = s\]

for the eigenvector \(s\), where \(M\) is the ‘PageRank’ matrix

\[
M = \alpha P^T + \frac{(1 - \alpha)}{N} E,
\]

\(E\) = matrix of all ones.

Note that the adjacency list \(\text{adj}\) for \(A\), \(\ell_i\) is just the size of \(\text{adj}[i]\).
Let’s return to the mathworks.com example...

This data set has 100 pages, stored in a .txt file as an adjacency list, e.g.

```
... 14, 1 2 3 4 5 6 7 8 9 10 11 12 13 14
15, 1
16, 1 16 17 18 19 20
...```

A small example:

\[
P = \begin{bmatrix}
0 & 1/2 & 0 & 1/2 \\
0 & 0 & 1 & 0 \\
1/3 & 1/3 & 0 & 1/3 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\]

\[
M = \alpha P^T + \frac{1 - \alpha}{4}
\]

Applying the power method with \(M\) and \(\alpha = 0.9\) we get

\[
Ms = s, \quad s \approx (0.15, 0.22, 0.42, 0.22)^T
\]

This ranks the websites by a measure of how connected they are to the pages.

Page 2 is highest ranked!
Aside: what do the iterates mean?

An aside: given a transition matrix P, the power method calculates

$$x_0, \quad x_1 = P^T x_0, \quad x_2 = (P^T)^2 x_0, \ldots$$

for a starting distribution x_0, and we have

$$\lim_{k \to \infty} (P^T)^k x_0 = s \quad \text{(stationary dist.)}$$

But what do the iterates mean? We have that

$$P(\text{in state } j \text{ at step 1}) = \sum_i P(\text{in state } i \text{ at step 0}) p_{ij}.$$

- Let $x_k = (P^T)^k x_0$ (the power method iterate)
- The formula says that

$$(x_1)_j = (P^T x_0)_j = P(\text{in state } j \text{ at step 1})$$

- so x_1 is the distribution at step 1 (given x_0)
- ... and x_k is the distribution at step k (given x_0)
Aside: what do the iterates mean?

Example (from before, with $\alpha = 1$):

$$P = \begin{bmatrix}
0 & 1/2 & 0 & 1/2 \\
0 & 0 & 1 & 0 \\
1/3 & 1/3 & 0 & 1/3 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}$$

$x_0 = (0.25, 0.25, 0.25, 0.25)$

After one step...

$x_1 = [0.083, 0.208, 0.5, 0.208]$

and so on...

$x_2 = [0.167, 0.208, 0.417, 0.208]$

$\vdots = \vdots$

$x_9 = [0.143, 0.214, 0.429, 0.214]$

$x_{10} = [0.143, 0.215, 0.428, 0.215]$

(converges to s as $k \to \infty$!)
What about ‘dead ends’?

- Cases matter for the model (should one-way links be important?)
- A few strategies exist., (not detailed here)
- Example: \((\alpha = 0.6)\)

\[
P = \begin{bmatrix}
0 & \frac{1}{2} & 0 & \frac{1}{2} \\
0 & 0 & 1 & 0 \\
\frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0
\end{bmatrix}
\quad \text{and} \quad
M = \begin{bmatrix}
0.1 & 0.1 & 0.3 & 0.1 \\
0.4 & 0.1 & 0.3 & 0.1 \\
0.1 & 0.7 & 0.1 & 0.1 \\
0.4 & 0.1 & 0.3 & 0.1
\end{bmatrix}
\]

The issue: \(M^T\) is no longer a transition matrix! A surfer that goes to the dead page disappears. The largest eigenvalue is less than one.

- Interpretation: \(M^kx \to 0\) as \(k \to \infty\) - all surfers end up vanishing
- Good news: the power method still works!
- \(x \neq \text{sum}(x)\) normalization is now required

Result for above: \(\lambda_1 \approx 0.771\) and \(s \approx (0.161, 0.255, 0.330, 0.255)\)
Sparse matrices

- Graph of $n = 100$ websites
- Each site: less than $k \approx 15$ links
- Adjacency matrix: $O(n^2)$ entries!

- Rat leaves a room with prob. p
- n total states
- Each state has $2 - 3$ neighbors

- Adjacency matrix has $O(N)$ non-zeros ($\ll N^2$)
- We must store matrices in a compact form!
Rat transition matrix ($s = 1 - 2p$):

\[
\begin{bmatrix}
 s & p & 0 & \cdots & 0 \\
 p & s & p & \ddots & \vdots \\
 0 & \ddots & \ddots & \ddots & 0 \\
 \vdots & \ddots & p & s & p \\
 0 & \cdots & 0 & p & s
\end{bmatrix}
\]

- The ‘list of entries’ and ‘adjacency list’ structures work here.
- Adjacency list is more compact; list of entries is easier.
- (For precise details, see ‘compressed row/column format’).
How to do this in python...? The ‘general’ way:

1) First, we need the ‘list of entries’ form:

\[
\begin{bmatrix}
 s & p & 0 & \cdots & 0 \\
p & s & p & \ddots & \\
0 & \ddots & \ddots & \ddots & 0 \\
& \ddots & p & s & p \\
0 & \cdots & 0 & p & s
\end{bmatrix}
\]

```python
# initialize row, col, val
row[0:2] = 0
col[0:2] = [0, 1]
val[0:2] = [s, p]
pos = 2
for j in range(n-1):
    row[pos:pos+3] = [j, j, j]
    col[pos:pos+3] = range(pos, pos+3)
    val[pos:pos+3] = [p, s, p]
#... also last row ...
```

2) Next, use the sparse matrix class in scipy.sparse

```python
from scipy import sparse

# given row, col, val, n
mat = sparse.coo_matrix((val, (row, col)), shape=(n, n))
```
What do we want to do with sparse matrices? Examples:

- Slices of rows/columns, submatrices etc.
- Matrix-vector products (important!) Ax
- Calculating eigenvalues
- Solving linear systems $Ax = b$

Sparse linear algebra deals with (good) algorithms to these.

```python
scipy.sparse implements efficient methods for sparse matrices...

sparse_mat = sparse_coo(...)  # sparse matrix
dense_mat = sparse_mat.toarray()  # 2d array version
x = some_vector()

y = dense_mat.dot(x)  # regular multiply
y = sparse_mat.dot(x)  # uses sparse multiply
```
Sparse matrices

Important point:
The "COO" (list of entries) format is not efficient for most calculation! The matrix should be converted to an efficient form before use.

- There are tradeoffs between efficiency and flexibility
- Formats include ‘compressed column/row’ (scipy: csc and csr)
- Conversion is typically fast between formats (but you can also construct each type directly)

Typical use: Construct COO (simple), then convert

```python
#Conversion between types:
mat = sparse.coo_matrix(...)  # in `list of entries' form
mat.tocsr()  # convert to compressed row
mat.tocsc()  # convert to compress column

mat.toarray()  # convert to *dense* 2d array
```
Sparse matrices

Special case: banded matrix, e.g. tridiagonal:

\[
A = \begin{bmatrix}
a_1 & b_1 & 0 & \cdots & 0 \\
0 & c_2 & a_2 & b_2 & \ddots \\
\vdots & \ddots & \ddots & \ddots & \ddots \\
0 & \cdots & c_{n-1} & a_{n-1} & b_{n-1} \\
0 & \cdots & 0 & c_n & a_n
\end{bmatrix}
\]

You can store this just as an \(n \times 3 \) array!

sketch of data storage:
\[
a = [[a1, b1, 0], \\
 [c2, a2, b2], \\
 \cdots \\
 [0, cn, an]]
\]

(In general, \(k \) diagonals \(\implies n \times k \) array)