Recursion
Recursion

- **Recursion** refers to a function calling itself
- A **recursive algorithm** has (a simpler case of) itself as a step
 - We always need ‘base cases’ that are resolved explicitly
- So how does this work in code?

Recursive code puts function calls on the (call) stack:

```python
def fact(n):
    if n == 0:  # base case
        return 1  # (*)
    elif n > 0:
        return n*fact(n-1)
    else:
        raise(ValueError('oh no!'))
a = fact(3)  # **
```

Call stack at the base case (*):
(most recent at bottom)
- fact(3)
- fact(2)
- fact(1)
- fact(0)
- return 1

- Functions resolve in ‘last in, first out’ (LIFO) order
- fact(0) finishes, then fact(1), ...
- computing \(n! \) puts \(n + 1 \) calls on the stack **at once**
Was that really necessary? No - recursion is excessive here.

```python
def fact(n):
    if n == 0:
        return 1
    else:
        return n*fact(n-1)
```

Call stack:
- fact(n)
 - ...
 - fact(0)

Both are different implementations of the same algorithm!

Key point: **Recursion isn’t free**
- The call stack takes memory/time to set up
- This is called ‘overhead’ (costs not part of the algorithm steps)
- Stack size is limited! `fact(3000) → stack size exceeded!`
Recursion: good and bad

- Common usage:
 - Derive a recursive algorithm (elegant)
 - Code an equivalent but non-recursive implementation
- Algorithms can often be nicely expressed recursively (e.g. binary search...)
- Good recursion (implementation) - less common:
 - ‘naturally’ recursive (can’t easily be made non-recursive)
 - or where the function overhead is not relevant
 - Stack limits mean recursive algorithms don’t scale up well

Example (bad): overlap can make a recursive algorithm inefficient:

```python
def fib(n):
    if n==0 or n==1:
        return 1
    return fib(n-1) + fib(n-2)
```

How many function calls are made here?

Answer: 2^n - compared to the $O(n)$ steps it should take.
A naturally recursive type of algorithm is ‘divide and conquer’:

- To compute something over a set:
- Break the set into (disjoint) pieces...
 - then compute for each piece,
 - ...combine and return the result

Example: sorting a list. Suppose a is a length n list of numbers:
 a) Split the list into two n/2 sized lists
 b) Sort each half-list
 c) Combine the sorted half-lists into one sorted list

This is mergesort.

![Diagram showing the merge sort process](image)
Recursion: mergesort

Mergesort:
 a) Split the list into two $n/2$ sized lists
 b) Sort each half-list
 c) Combine the sorted half-lists into one sorted list

implementation (sketch):

def mergesort(j, k, arr, work):
 if j==k: # base case
 return

 m = (j + k)//2
 mergesort(j, m, arr, work)
 mergesort(m+1, k, arr, work)

 # now [j,m] and [m+1,k] are sorted
 # merge them together...
 # (use work for temp space)

• This sorts the sub-list from $[j, k]$ (inclusive).
• Note that work is passed: shared space for calculations
Mergesort:

a) Split the list into two \(n/2 \) sized lists
b) Sort each half-list
c) Combine the sorted half-lists into one sorted list

How efficient is mergesort?

- Let \(M(n) \) be the work required to run mergesort on a length \(n \) list
- Step (b) requires \(2M(n/2) \) work
- Step (a) is trivial and (c) requires \(cn \) work (exercise)

Assume \(n = 2^k \) is a power of 2 for simplicity. Then

\[
M(n) = 2M(n/2) + cn \\
= 2(2M(n/4) + c(n/2)) + cn \\
= \cdots \\
= cn + 2c \frac{n}{2} + 4c \frac{n}{4} + \cdots \\
\]

\(\implies M(n) \approx kcn \) so \(O(n \log n) \) work is required.

(Aside: the \(O(n \log n) \) is essentially optimal for Big-O. The popular algorithm with this Big-O is **quicksort**, which is a bit faster than mergesort.)
Data structures:
stacks and queues
The simplest data structures are **stacks** and **queues**. For both:

- A container with ordered data (a ‘list’, in the English sense of the word)
- Two operations are available:
 - An **insert** function that adds an item to the container
 - A **pop** function that removes an item (by some rule)

The differences:

- A **stack** is a **first in, first out** (FIFO) container:
 - items are inserted to and popped from the top of the stack
- A **queue** is a **first in, last out** (LIFO) container
 - items are inserted to the top, removed from the bottom
Python lists have commands to do this (so we don’t need a new class):

- `a.pop()` pops from the end; `a.pop(0)` from the start
- `a.append()` adds to the end, `a.insert(0)` inserts at the start

We’ll use `append` for simplicity; `insert/pop` can both be implemented to be $O(1)$ operations (very efficient) for stacks and queues.
A useful structure is a tree:

- a graph consisting of nodes connected by edges
- Has the tree property: contains no cycles (closed paths from a node to itself)

We can build a simple tree in python with a Node class

- It contains data for that node (e.g. names in a family tree)
- It has a list children of nodes below it in the tree
- A tree is a root node with children, which have children, etc.
- A node with no children: ‘leaf node’

Node class:

```python
class Node:
    def __init__(self, data, children):
        self.data = data
        self.children = children
        # ... and other features ...
```

The tree above, with \(k^2 \)'s as data:

```python
n = [Node(k**2, []) for k in range(7)]
n[0].children = [n[1], n[2]]
```
Now suppose we want to find a value val in a tree. If found, we return a reference to the corresponding node. One approach:

- Check if the root has val
- If not, search its children recursively

Recursive algorithm:

This is called a **depth-first search** (DFS).
Now suppose we want to find a value *val* in a tree. If found, we return a reference to the corresponding node. One approach:

- Check if the root has *val*
- If not, search its children recursively

Recursive algorithm:

```python
def search(val, root):
    if(root.data==val):
        return root
    for child in root.children:
        t = search(val, child)
        if t: #if t != None
            return t
    return None
```

This is called a **depth-first search** (DFS).
At the start, initialize stack to contain node 0. Replace recursive calls with ‘add node to the stack’.

steps:

- Check 0, add [1, 2] to stack
 stack is [1, 2]
- Check 2, add 6 to stack
 stack is [1, 6]
- Check 6 (no children!)
 stack is [1]
- Check 1, add [3, 4, 5] to stack
 stack is [3, 4, 5]

This does the same thing as the recursive method!
Recursion and stacks: searching trees

Recursive algorithm:

```python
def search(val, root):
    if(root.data==val):
        return root
    for child in root.children:
        t = search(val, child)
        if t: #if t != None
            return t
    return None
```

Using a stack:

```python
def dfs(val, root):
    stack = [root]
    while stack: # empty list is False
        node = stack.pop()
        if(node.data == val):
            return node
        stack.extend(node.children)
    return None
```

- The recursive method puts function calls on the (special) call stack
- The stack method uses a simpler stack of nodes to track un-searched nodes
- The explicit code is more efficient (but the same algorithm)!
Breadth-first search

Replacing the stack in DFS with a **queue** also works...

Using a stack:

```python
def dfs(val, root):
    stack = [root]

    while stack:
        node = stack.pop()
        if(node.data == val):
            return node
        stack.extend(node.children)

    return None
```

Using a queue:

```python
def bfs(val, root):
    q = [root]

    while q:
        node = q.pop(0)
        if(node.data == val):
            return node
        q.extend(node.children)

    return None
```

This time, the earliest nodes added are checked first! (closest to root). We call this a **breadth-first search**.

(Aside: for a cyclic graph, more effort is required for both DFS and BFS to avoid going in circles!)
Example (comparing DFS and BFS):

Depth-first:

Breadth-first:

(Order may vary a bit by implementation)