Errors and algorithms
Error and residuals
Measuring error

There are two fundamental types of error. Let

\[x = \text{(solution to } f(x) = 0) \], \quad \tilde{x} = \text{approximation to } x

- **Absolute error** \(|x - \tilde{x}| \)
- **Relative error** \(|x - \tilde{x}|/|x| \)
 - \(|x| \) is very large/small, relative may be a better measure
 - rel. error \(\approx 10^{-(k+1)} \) means \(\approx k \) significant digits

Lastly, there is an indirect measure...

- The **residual** is \(f(\tilde{x}) \)
 - i.e. the leftover when the approx. is plugged into the equation
- The residual is unreliable, but is **computable**
Measuring error: Example

\[f(x) = (x - 100)^7, \quad x = 100, \quad \tilde{x} = 100.1 \]

- Absolute/relative errors: 0.1 and 0.1/100 = 10^{-3}
 (Error is in **fourth** digit: \(\tilde{x} = 1.001 \times 10^2 \); three digits of accuracy).
- Residual:
 \[f(\tilde{x}) = (0.1)^7 = 10^{-7} \text{ (deceptively small!)} \]

When do we use each measure?

- Residual is easy to check - that is its main feature
 ... because it **isn’t the same as error**
- Relative error makes sense most of the time (but absolute is easier)
- Example: red light and orange light wavelengths \(\lambda = 700 \text{ nm and 600 nm} \);
 difference \(10^{-7} \text{ m} \) - ‘small’ absolute error in these units...

Key theme (for later) - what is error?:

Algorithms take in ‘tolerances’ that say ‘compute to within (this error)’. The algorithm must answer: **what does ‘error’ mean?**
Measuring error: sensitivity

In numerics, we care about how sensitive a problem is to changes in the input.

For example, consider the problem:

given \(x_0 \), evaluate \(f(x_0) \).

Suppose the input \(x_0 \) is perturbed by a small amount \(\delta \) to a new value \(\tilde{x}_0 \)....

\[
f(\tilde{x}_0) = f(x_0 + \delta) \approx f(x_0) + f'(x_0)\delta
\]

The difference in the results is related to \(\delta \) by

\[
|f(\tilde{x}_0) - f(x_0)| \approx |f'(x_0)|\delta.
\]

That is, as the error in the input propagates to the result, it is amplified by a factor \(f'(x_0) \):

\[
\text{(error in result)} \approx |f'(x_0)|\text{(error in input)}.
\]
Measuring error: sensitivity

For example, take \(f(x) = \tan(x) \) and

\[
x_0 = \frac{\pi}{2} - 10^{-2}, \quad \tilde{x}_0 = x_0 - 10^{-2}.
\]

Then

\[
\tan(x_0) = 99.996 \cdots \quad \tan(\tilde{x}_0) = 49.99
\]

so the difference \(10^{-2} \) in \(x \) \(\implies \) difference \(\approx 50 \) in \(f \! \)!

Definition (Condition)

A very sensitive problem in this sense is called **ill-conditioned**. A not-so sensitive problem is called **well-conditioned**.

The typical ‘amplification’ factor for the relative error is called the **condition number**, defined in a suitable way (depends on problem).

For instance, the condition number for evaluating \(f(x) \) is \(f'(x_0)/f(x_0) \) since

\[
\frac{|f(x_0) - f(\tilde{x}_0)|}{|f(x_0)|} \approx \frac{|f'(x_0)|}{f(x_0)}|x_0 - \tilde{x}_0|.
\]

Ill-conditioned problems are inherently hard to solve! Errors the result are hard to control, even if the inputs are fine.
An algorithm: bisection
Bisection: the setup

The problem (zero-finding):

Let $f(x)$ be a continuous function and suppose there is a solution x^* to

$$f(x) = 0.$$

Goal: Find a **numerical solution** \tilde{x} such that the error is less than a given **tolerance** tol, i.e.

$$|\tilde{x} - x^*| < \text{tol}$$

(this is the **absolute error**; the relative error is $|\tilde{x} - x^*|/|x^*|$)

- Requirement: there is a **bracketing interval** $[a, b]$ such that $f(a)$ and $f(b)$ have opposite signs.
- By the intermediate value theorem, there is a zero in $[a, b]

- What guess c minimizes the possible error? \implies take the midpoint

![Diagram showing a function $f(x)$ with zero at x^* and bracketing interval $[a, b]$ with midpoint c.]
Bisection: the algorithm

• Assume $f(c) \neq 0$. Since $f(a)$, $f(b)$ have opposite signs, exactly one of $[a, c]$ and $[c, b]$ is a bracketing interval.

• Now apply the same process to the new bracketing interval.

• Key question: How fast do the midpoints converge to x^*?
Bisection: the algorithm

- Let \([a_n, b_n]\) and \(c_n = (a_n + b_n)/2\) denote the interval/midpoint at \(n\)-th step.
- Bound on the error:
 \[
 |x^* - c_n| < \frac{1}{2} |b_n - a_n|
 \]
- We know how the interval sizes change, so
 \[
 |x^* - c_n| < \frac{1}{2} 2^{-n} |b_0 - a_0|
 \]
 (intervals halve in width at each step).
- \(\implies\) error decreases by a factor of 2 each step (not bad, not great...)
- Benefit: not much is assumed of \(f\)