Anisotropic representations for superresolution of hyperspectral data

Edward H. Bosch, Wojciech Czaja, James M. Murphy, and Daniel Weinberg

Norbert Wiener Center
Department of Mathematics
University of Maryland, College Park

April 22, 2015
Goals of Talk

1. Introduce the notion of superresolution.

2. Briefly survey the mathematical discipline of anisotropic harmonic analysis.

3. Describe a superresolution algorithm based on shearlets.

4. Evaluate the results of superresolution experiments on synthetic and hyperspectral data.
The goal of superresolution is to increase the resolution of an image I, while preserving detail and without producing artifacts.

The outcome of a superresolution algorithm is an image \tilde{I}, which is of the same scene as I, but at a higher resolution.

Let I be an $M \times N$ matrix and \tilde{I} an $\tilde{M} \times \tilde{N}$ matrix, with $M < \tilde{M}$, $N < \tilde{N}$. We consider the common case where $\tilde{M} = 2M$ and $\tilde{N} = 2N$, which corresponds to doubling the resolution of the original image.

Images with multiple channels, such as hyperspectral images, can be superresolved by superresolving each channel separately.
Superresolution can be implemented by using information in addition to I, such as low resolution images at sub-pixel shifts of the scene or images of the scene with different modalities.

There are several standard approaches to superresolving I without using additional information. Among the most common are nearest neighbor interpolation and bicubic interpolation.

In the case of nearest neighbor interpolation, new pixel values are computed by replicating current pixel values. This method is simple and computationally efficient, but leads to extremely jagged superresolved images.

Other methods involve convolving the image with an interpolation kernel, which amounts to taking a weighted average of pixel values within some neighborhood. For example, bicubic interpolation determines \tilde{I} by computing each new pixel as a weighted average of the 16 nearest neighbors in I.
Harmonic analysis decomposes signals into simpler elements.

Classical methods include Fourier series and wavelets. These have proven extremely influential and quite effective for many applications\(^1\).

However, they are fundamentally isotropic, meaning they decompose signals without considering how the signal varies directionally.

In a broad sense, wavelets decompose an image signal with respect to translation and scale. Since the early 2000s, there have been several attempts to incorporate directionality into the wavelet construction.

These constructions incorporate directionality in a variety of ways.

Some of the major constructions include:
- Curvelets (Donoho and Candès) \(^2\).
- Contourlets (Do and Vetterli) \(^3\).
- Shearlets (Guo, Labate, Kutyniok, Weiss, et al.) \(^4\).

We consider shearlets for superresolution, since they have several efficient numerical implementations in MATLAB \(^5\).

Mathematically, given a signal \(f \in L^2([0, 1]^2) \) and an appropriate shearlet function \(\psi \), we may decompose \(f \) as

\[
f = \sum_{i \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}^2} \langle f, \psi_{i,j,k} \rangle \psi_{i,j,k},
\]

where:

\[
\psi_{i,j,k}(x) := 2^{3i/4} \psi(B^j A^i x - k), \quad A = \begin{pmatrix} 2 & 0 \\ 0 & 2^{1/2} \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.
\]

Note that \(A \) is anisotropic, hence it will allow our new analyzing functions to be more pronounced in a particular direction. The new matrix \(B \), a shearing matrix, lets us select the direction.

The anisotropic character of shearlets has proven useful for a variety of problems in image processing, including image denoising\(^6\) and image registration\(^7\).

Harmonic analysis has been applied to image superresolution, for its ability to capture essential aspects of images.

Particular instances include:

- Wavelets\(^8\).
- TV-regularization\(^9\).
- Circulant matrices and frame theory\(^10\).

The method of circulant matrices is anisotropic; it deduces directional content of an image by adaptively constructing tight frames.

The approach taken in our new algorithm is to use anisotropic shearlets to determine the directional content present in an image.

1. An image is up-sampled with a conventional, isotropic superresolution method, for example nearest neighbor or bicubic interpolation.

2. The shearlet transform is then applied to the image, and dominant directions are computed based on these coefficients.

3. This information is then used to smoothly blur the image in certain directions locally, to provide a smoother superresolved image.

Our algorithm for shearlet-based superresolution is coded in MATLAB.
To test our algorithms, we first considered synthetic experiments. Since our algorithms incorporate anisotropic information, we wanted to study their efficacy on images that have very prominent directional content.

We first constructed 1024×1024 half planes in MATLAB, at various slopes. Two such half planes appear below.

Figure: Half planes of slope -3 and -0.5, respectively.
Results of Synthetic Experiments

- We evaluate our algorithm by computing the PSNR for each plane, superresolved with each of four techniques: our shearlets algorithm with 16 and 32 directions, the circulant matrices method of Bosch et al., and bicubic interpolation.

<table>
<thead>
<tr>
<th>Planar Slope</th>
<th>PSNR Shearlet (16 directions)</th>
<th>PSNR Shearlet (32 directions)</th>
<th>PSNR Circulant Matrices</th>
<th>PSNR Bicubic</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.20</td>
<td>34.3692</td>
<td>34.2751</td>
<td>34.5594</td>
<td>34.2194</td>
</tr>
<tr>
<td>0.25</td>
<td>34.3305</td>
<td>34.2185</td>
<td>34.1892</td>
<td>34.2100</td>
</tr>
<tr>
<td>0.33</td>
<td>35.4151</td>
<td>35.4039</td>
<td>35.3457</td>
<td>35.0192</td>
</tr>
<tr>
<td>0.50</td>
<td>34.8050</td>
<td>35.5906</td>
<td>33.4600</td>
<td>34.3771</td>
</tr>
<tr>
<td>1.00</td>
<td>35.6006</td>
<td>35.7117</td>
<td>36.8685</td>
<td>35.3984</td>
</tr>
<tr>
<td>2.00</td>
<td>36.6007</td>
<td>35.3213</td>
<td>36.6829</td>
<td>35.9840</td>
</tr>
<tr>
<td>3.00</td>
<td>34.4332</td>
<td>34.5253</td>
<td>35.5237</td>
<td>34.2145</td>
</tr>
<tr>
<td>4.00</td>
<td>35.6012</td>
<td>34.9848</td>
<td>34.8555</td>
<td>34.7286</td>
</tr>
<tr>
<td>5.00</td>
<td>35.3447</td>
<td>34.8927</td>
<td>34.6148</td>
<td>34.6299</td>
</tr>
</tbody>
</table>

Table: The PSNR values for various methods on angled half planes.

- We notice that the anisotropic harmonic analysis methods outperform bicubic interpolation in all cases.
We also tested our algorithm on real data. We considered a hyperspectral data set of the University of Houston11, which consists of 144 bands of size 349×1905.

This dataset has a spatial resolution of 2.5 m, and spectral resolution of between 380 nm and 1050 nm. For convenience, we extracted a 256×256 subset from band 70.

As before, we ran our algorithm for superresolution and compared it to the circulant matrix method and bicubic interpolation. We only considered the shearlet algorithm with 16 directions, due to the size of the image.

<table>
<thead>
<tr>
<th>PSNR Shearlet (16 directions)</th>
<th>PSNR Circulant Matrices</th>
<th>PSNR Bicubic</th>
</tr>
</thead>
<tbody>
<tr>
<td>29.2720</td>
<td>29.2561</td>
<td>29.2125</td>
</tr>
</tbody>
</table>

Table: The PSNR values for the University of Houston scene.

The shearlet method produces optimal PSNR for this hyperspectral image.
Figure: Image of Houston, superresolved with bicubic interpolation (left) and shearlet algorithm (right). Notice the smoother edges in the case of shearlet superresolution.
Results of Hyperspectral Experiments (3/3)

Figure: Subset from image of Houston, superresolved with bicubic interpolation (left) and shearlet algorithm (right). Notice the smoother edges around circular and rectangular buildings.
We described a shearlet-based algorithm for the superresolution of images.

We performed the algorithm on simple synthetic examples of half planes. We compared our algorithm at two different scales with bicubic interpolation and a recent circulant matrix method.

Our shearlet algorithm tested the best in 5 out of 9 of the half-plane examples, while the circulant matrix method performed the best in the the remaining 4 examples. This indicates that algorithms based on anisotropic harmonic analysis outperform bicubic interpolation in all iterations of our half plane experiments.

We also applied our algorithm to one channel of a hyperspectral image. Compared to bicubic interpolation, our algorithm produced an image having fewer jagged edges and in fact also has improved PSNR.
In general, anisotropic harmonic provides a powerful set of techniques for superresolution, both in terms of PSNR and visual quality.

One of the greatest challenges for our algorithm is superresolving images with many textures without degrading the PSNR.

In future work, we would like to find a method for filtering out the textures so as to only smooth the edges.

In addition, we would like to consider more sophisticated ways of improving edges beyond motion blurring, which tends to decrease image sharpness.

State-of-the-art methods, incorporating directional interpolation and statistical methods, have been proposed by Mallat et al.12, and shall be studied.

It is also of interest to study data cubes, such as full hyperspectral or lidar data, with anisotropic harmonic analysis.

These would require 3D transform methods that are more general than the ones described in this talk.

Implementations of 3D shearlets have been recently developed, and are being implemented for the problem of 3D superresolution of hyperspectral and lidar data.