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A DISPERSIVE REGULARIZATION FOR THE MODIFIED
CAMASSA-HOLM EQUATION*

YU GAOT, LEI LI¥, AND JIAN-GUO LIU$

Abstract. In this paper, we present a dispersive regularization approach to construct a global
N-peakon weak solution to the modified Camassa-Holm equation (mCH) in one dimension. In
particular, we perform a double mollification for the system of ODEs describing trajectories of N-
peakon solutions and obtain N smoothed peakons without collisions. Though the smoothed peakons
do not give a solution to the mCH equation, the weak consistency allows us to take the smoothing
parameter to zero and the limiting function is a global N-peakon weak solution. The trajectories
of the peakons in the constructed solution are globally Lipschitz continuous and do not cross each
other. When N = 2, the solution is a sticky peakon weak solution. At last, using the N-peakon
solutions and through a mean field limit process, we obtain global weak solutions for general initial
data mo in Radon measure space.

Key words. peakon interaction, dispersive limit, non-uniqueness, correct speed of singularity,
selection principle, weak solutions

AMS subject classifications. 35C08, 35D30, 82C22

1. Introduction. This work is devoted to investigate the N-peakon solutions
to the following modified Camassa-Holm (mCH) equation with cubic nonlinearity:

(1) me + [(u? —u)ml, =0, m=u—uUp, TR, t>0,
subject to the initial condition
(2) m(z,0) =mo(z), ze€R.

From the fundamental solution G(z) = 1e~/*l to the Helmholtz operator 1 — Oy,
function v can be written as a convolution of m with the kernel G:

u(z,t) = /RG(J: —y)m(y, t)dy.

In the mCH equation, the shape of function G is referred to as a peakon at x = 0 and
the mCH equation has weak solutions (see Definition 2.2) with N peakons, which are
of the form [12, 14]:

(3) uN (z,t) = ZpiG(ac —zi(t), mN(zx,t) = Zpié(ac —x;(t)),

where p; (1 <i < N) are constant amplitudes of peakons. We call this kind of weak
solutions as N-peakon solutions. When x4 (t) < x2(t) < --- < zn(t), trajectories x;(¢)
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2 YU GAO, LEI LI AND JIAN-GUO LIU

of N-peakon solutions in (3) satisfies [12, 14]:

d 1 2 1 Ti—x; 1 XTi—X Tm —Tn
(4) gpmi= gl T3 2 ppie™ T 5D pipie™ T Y prpae™ T

j<i Ji>i 1<m<i<n<N

In general, solutions {z;(¢)}}¥,; to (4) will collide with each other in finite time (see
Remark 2.9). By the standard ODE theories, we know that (4) has global solutions
{x;(t)}}, subject to any initial data {z;(0)}X,. However, u" (x,t) constructed by
(3) with global solutions {z;(t)}X, to (4) is not a weak solution to the mCH equation
after the first collision time (see Remark 2.11). There are some nature questions:
(i) What will be a weak solution to the mCH equation after collisions? Is it unique?
If not unique, what is the selection principle?
(ii) If there is a weak solution to the mCH equation after collisions, is it still in the
form of N-peakon solutions?
(iii) If the weak solution is still an N-peakon solution after collision, how do peakons
evolve? In other words, do they stick together, cross each other, or scatter?
Paper [12] showed global existence and nonuniqueness of weak solutions when initial
data mg € M(R) (Radon measure space), which partially answered question (i). In
Subsection 2.2, we prove global existence of N-peakon solutions, which gives an answer
to question (ii). After collision, all the situations mentioned in the above question
(iii) can happen (see Remark 2.9).

In this paper, we will study these questions through a dispersive regularization for
the following reasons (see (97) for the dispersive effects of our mollification method):
(i) This dispersive regularization could be a candidate for the selection principle.
(ii) As described below, if initial datum is of N-peakon form, then the regularized

solution u™V€ is also of N-peakon form, and so is the limiting N-peakon
solution.

The main purpose of this paper is to study the behavior of € — 0 limit for the
dispersive regularization. First, we introduce the dispersive regularization for the
mCH equation.

To illustrate the dispersive regularization method clearly, we start with one peakon]j
solution pG(z—x(t)) (solitary wave solution). We know that pG(x—x(t)) is a weak so-
lution if and only if the traveling speed is % (t) = 2p? [12, Proposition 4.3]. Because
characteristics equation for (1) is given by

) Lalt) = w2 a(t), 1) — w2 (0), 1),

for solution pG(x — x(t)) we obtain

(© Salt) = PG(0) ~ F(GR)(0) = o

Equation (6) implies that to obtain solitary wave solutions, the correct definition of
G? at 0 is given by

7 (G2)(0) = G*(0) - 5 = 7.

However, G2 is a BV function which has a removable discontinuity at 0 and

(5) (@)(0-) = (G2)0+) = |,

This manuscript is for review purposes only.
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A DISPERSIVE REGULARIZATION FOR THE MCH EQUATION 3

which is different with (7). To understand the discrepancy between (7) and (8), our
strategy is to use the dispersive regularization and the limit of the regularization.
Mollify G(z) as

G(x) := (pe * G)(2),

where p. is a mollifier that is even (see Definition 2.1). Then, we can obtain (7) in
the limiting process (Lemma 2.5):

) lim (e = (G5)2)(0) = oo

The above limiting process is independent of the mollifier p..

Naturally, we generalize this dispersive regularization method to IN-peakon so-
lutions u® (z,t) = Zi\il piG(z — x;(t)). From the characteristic equation (5), we
formally obtain the system of ODEs for z;(t)

d

(10) i) = [ (@i(). 0]

— [u¥(@i(t),0)]%, i=1,...,N.

[ul (z, )] 2= (Z;vzl pjGa(x — a:j(t)))2 is a BV function and it has a discontinuity at
z;(t). By using similar regularization method in (9), we regularize the vector field in
(10). For {z}4_,, denote

N

(1) wM o {an}) = D piG (e —20) and UN(as{an}) = [ = [ud]",

=1

The dispersive regularization for N peakons is given by

(12) iz() UM (@i () {2k (D)) = (pe * UN) (@5 (1) {25 (1)}),  i=1,....N.

The above regularization method is subtle. We emphasize that if we use UN given by
(11) as a vector field (which is already globally Lipschitz continuous) instead of UN:€,
then comparing with (9) we have

lim (G<)%(0) = 0.

e—0
In this case, the traveling speed of the soliton (one peakon) is given by

— PG(0) - pP(G2)(0) = ~p2,

@ 1

which is different with the correct speed %p2 for one peakon solution.
By solutions to (12), we construct approximate N-peakon solutions to (1) as:

sz xfx ))

Let € — 0 in u™¢(z,t) and we can obtain an N-peakon solution

N
(13) N, t) = 3 piGle - ai(1)),
i=1

This manuscript is for review purposes only.
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4 YU GAO, LEI LI AND JIAN-GUO LIU

to the mCH equation, where x;(t) are Lipschitz functions (see Theorem 2.4).
If we fix N and let € go to 0 in the regularized system of ODEs (12), we can

obtain a limiting (¢ — 0 in the sense described in Proposition 2.7) system of ODEs
to describe N-peakon solutions, i =1,2,--- | N,

(14)

N 2 2 2

%xi(t) = (Z piG(zi(t) — fﬂj(t))) - ( > piGalai(t) — Ij(t))) - % ( > Pk) .

Jj=1 JEN;1(t) kEN;2(t)

Here N1 (t) and Na(t), i = 1,2,--- , N, are defined by (42). The vector field of the
above system is not Lipschitz continuous. Solutions for this equation are not unique,
which implies peakon solutions to (1) are not unique (see Remark 2.9). Indeed, the
nonuniqueness of peakon solutions was also obtained in [12]. When z1(t) < z2(t) <
- < xn(t), the system of ODEs (14) is equivalent to (4).

We also prove that trajectories x5(¢) given by (12) never collide with each other
(see Theorem 3.2), which means if z{(0) < z5(0) < --- < x%/(0), then z{(t) <
x5(t) < --- < a5 (t) for any t > 0. For the limiting N-peakon solutions (13), we have
21(t) < x2(t) < -+ < zn(t). Notice that the sticky N-peakon solutions obtained
in [12] also have this property and in the sticky N-peakon solutions, {x;(t)}}¥; stick
together whenever they collide. When N = 2, we prove that peakon solutions given
by the dispersive regularization are exactly the sticky peakon solutions (see Theorem
3.4). However, the situation when N > 3 can be more complicated. Some of the
peakon solutions given by the dispersive regularization are sticky peakon solutions
(see Figure 1) and some are not (see Figure 2).

For general initial data mg € M(R), we use a mean field limit method to prove
global existence of weak solutions to (1) (see Section 4).

There are also some other interesting properties about the mCH equation, which
we list below.

The mCH equation was introduced as a new integrable system by several different
researchers [8, 10, 22, 23]. The mCH equation has a bi-Hamiltonian structure [14, 22]
with Hamiltonian functionals

1 1
(15) Hy(m) = / mudz, Hi(m)= f/ ut + 2uu — —ul ) da.
R 4 Jr 3

Equation (1) can be written in the bi-Hamiltonian form [14, 22],
0H 0H
2 2 0 1
= — — z = Ji = K77
i ((w” = uz)m) om om
where

J=-8, (m@;l(maz)), K=0—0,

are compatible Hamiltonian operators. Here Hy and H; are conserved quantities for
smooth solutions. Hy is also a conserved quantity for W21 (R) weak solutions [12]. N-
peakon solutions are not in the solution class W21(R) and Hy, H; are not conserved
for N-peakon solutions in the case N > 2; see Remark 2.9 for the case N = 2. This
is different with the Camassa-Holm equation [3]:

my+ (um)y, + mu, =0, m=u—1u,, R, t>0

which also has N-peakon solutions of the form

N
ul (x,t) = Zpi(t)e_‘x_wi(t)‘,
i=1

This manuscript is for review purposes only.



126
127

128

129

130

131
132
133
134
135
136
137
138
139

146
147
148
149
150
151
152

A DISPERSIVE REGULARIZATION FOR THE MCH EQUATION 5

The amplitude p;(t) evolves with time which is different with the N-peakon solutions
to mCH equation (1) where p; are constants. p;(t) and z;(t) satisfy the following
Hamiltonian system of ODEs:

—xl ij —lei)=2; M1 =1, N,
(16)
t) = Zpi(t)pj(t)sgn(xi(t) — g;j(t))e—lfi(t)—fﬂj(t)l, i=1,...,N,
j=1

and the Hamiltonian function is given by

Z pi(t)p;(t —lzi()—2; ()]

3,7=1

which is a conserved quantity for N-peakon solutions and the corresponding functional
Hj given by (15) is conserved for smooth solutions for the Camassa-Holm equation.
When p;(0) > 0, there is no collision between x;(¢) [4, 6, 18]. Hence, solutions to
system (16) exist globally. However, collisions may occur if p;(0)’s have opposite
signs. In [16], Holden and Raynaud studied this case and they constructed a new
set of ordinary differential equations which is well-posedness even when collisions
occur. They obtained global N-peakon solutions to the Camassa-Holm equation,
which conserve the Hamiltonian Hy. For more details about peakon solutions to the
Camassa-Holm equation, one can also refer to[l, 2, 7, 13, 17].

In comparison, system (4) is a nonautonomous Hamiltonian system as described
below. Let &;(t) := x;(t) — ;p?t. Denote

X(t) == (#1(8), &2(t), -, @n (1),

and

H(X,t) = Z pipje” i(t)—w;(t) — Z pipje e (5 —p; Dt+E; (1) =3, (t)
1<i<j<N 1<i<j<N

Then, (4) can be rewritten as a Hamiltonian system:

dX 0H
17 A
(17) dt 86X’
where
1 . .
-3, i<j;
' M 0H  OH
(18) A= (aij)NxN, Q5 = 01, ’L‘—j', s and 67 = (Th”%)
5, 1>

Notice that H depends on t and it is not a conservative quantity.

For more results about local well-posedness and blow up behavior of the strong
solutions to (1) one can refer to [5, 9, 14, 15, 21]. In [24], Zhang used the method
of dissipative approximation to prove the existence and uniqueness of global entropy
weak solutions u in W21 (R) for the mCH equation (1).

The rest of this article is organized as follows. In Section 2, we introduce the
dispersive regularization in detail and prove global existence of N-peakon solutions.

This manuscript is for review purposes only.
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6 YU GAO, LEI LI AND JIAN-GUO LIU

By a limiting process, we obtain a system of ODEs to describe N-peakon solutions.
In Section 3, we prove that trajectories of N-peakon solutions given by dispersive
regularization will never cross each other. When N = 2, the limiting peakon solutions
are exactly the sticky peakon solutions. When N = 3, we present two figures to show
two different situations. In Section 4, we use a mean field limit method to prove global
existence of weak solutions to (1) for general initial data mo € M(R). At last, we
use the same double mollification method to mollify the mCH equation directly. By
linearizing the modified equation, we show that this regularization has the dispersive
effects.

2. Dispersive regularization and N-peakon solutions. In this section, we
introduce the dispersive regularization in details and use the regularized ODE system
to give approximate solutions. Then, by some compactness arguments we prove global
existence of N-peakon solutions.

2.1. Dispersive regularization and weak consistency. First, we use smooth
functions in the Schwartz class S(R) to define mollifiers. f € S(R) if and only if
f € C(R) and for all positive integers m and n

sup |z f™ ()] < oco.
rz€eR

DEFINITION 2.1. (i). Define the mollifier 0 < p € S(R) satisfying

/R pe)dz =1, p(x) = p(jz]) for z€R.

(ii). For each € > 0, set

Fix an integer N > 0. Give an initial data

N

N
(19) m (x) = pib(z —c;), 1 <cy<---<ey and Y |pi| < My,
i=1 i=1

for some constants p;, ¢; (1 <i < N) and M.
As stated in Introduction, we set G°(x) = (G * p.)(z). For any N particles
{xx 1Y, C R, define (py, is the same as in (19))

N
uN (s {a i) = Y peGe(z — an),
k=1

UN (z; {zi}i2n) == [(@™)? = (8,u™)?] (25 {xn 12l
and

UN (23 {z}ils) = (pe x UY) (@3 {zr}izy)-

The system of ODEs for dispersive regularization is given by

(20) %xg(t) = UNe(2(t); {zs (), i=1,---,N,

This manuscript is for review purposes only.
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A DISPERSIVE REGULARIZATION FOR THE MCH EQUATION 7

with initial data x(0) = ¢; given in (19). This system is equivalent to (12) mentioned
in Introduction. Because U™€ is Lipschitz continuous and bounded, existence and
uniqueness of a global solution {z$(¢)}¥; to this system of ODEs follow from standard
ODE theories. By using the solution {z§(t)}Y,, we set

(21) u e (z, ) == w2 {2 () 1),

and
N N
(22) mN’E(ﬂc, t) = Zpipe(x —z5(¢)), mév(:m t):= Zpié(x —z5(t)).

Due to (1 — 0..)G® = p., we have

(23) m™Ne(z,t) = (pe * mN)(z,t) and (1 — Opp)uNc(z,t) = m™(z,t).
Set

(24) UM (1) = UN (i {ai(O1l)),  UN(x,t) = UM (as {2 (8) }i2)-

Therefore, UN“(z,t) = (pe * UY)(z,t) and (20) (or (12)) can be rewritten as
d
(25) i) =UN(@i(0),1), i=1,--,N.

Next, we show that u™N>¢ defined by (21) is weak consistent with the mCH equation
(1). Let us give the definition of weak solutions first. Rewrite (1) as an equation of u,

(1 = Opa)ur + [(U'? - ui)(u — Ugz)|z

1 1
= (1 —Oga)ur + (US + uui)x - g(u?))x:r:v + g(ui)xm =0.

For a test function ¢ € C°(R x [0,T)) (T > 0), we denote the functional
T
Llud)i= [ [ uw0l6uw.t) ~ draal.t)dade
o Jr
1 /7 , 1 /7 ,
- = Uy (2,8) o (z, t)dxdt — = u’ (2, ) Prge (x, t)dadt
3Jo Jr 3Jo Jr

(26) + /0 /R (u® + wu?) (v, t)dadt.

Then, the definition of weak solutions in terms of u is given as follows.

DEFINITION 2.2. For mg € M(R), a function
ue C([0,T); H'(R)) N L0, T3 WH(R))
is said to be a weak solution of the mCH equation if
£lu,6) = [ 6z 0)dmg
R

holds for all ¢ € C(R x [0,T)). If T = +oo, we call v as a global weak solution of
the mCH equation.

This manuscript is for review purposes only.
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For simplicity, we denote

(1), 9 / /fxt (. £)

With the definitions (22)-(25), for any ¢ € C2°(R x [0,T)), we have
< 67¢t>+<UN€ €7¢z —/ /sz x — x{(t)) bt (x, t)dxdt
T N
+/0 /Zpid(x — 2SO UN (2, ) o (2, t)dadt
- / sz Bu(w5(8),8) + UM (a5 (), ) (25 (1), 1))t

(27) / szdt S (t), t)dt /¢ z,0)dmY.

On the other hand, combining the definition (23) and (26) gives

0= [ ' [ G0 = a5 ' [0 o
—*/ / e ¢zzzdmdt+/ / Noeyd 1w (ul9)?) ppdadt

= (91, (1 — Ouz) N6>+<[( NE) auNe J(1 = Oz )u N67¢x>
= <mN’€v¢t> <UeNmN’€v¢z>'

I
|

1]
IS
§

Set
Byci = £(u™,0) + [ oo 0)dm)
(28) _ <mN,e —m/ 7¢t> <UN N,e UN,em£V7¢w>.

We have the following consistency result.

PROPOSITION 2.3. We have the following estimate for En . defined by (28):
(29) |Ene| < Ce,

where the constant C' is independent of N, e.

Proof. By changing of variable and the definition of Schwartz function, we can
obtain

(30) [ talpe(oyde = [ falZo(D)do = ¢ [ lalployi < G, -

for some constant C,,.
Due to ZZI\LI |pi] < Mp and (30), the first term on the right hand side of (28) can

This manuscript is for review purposes only.
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A DISPERSIVE REGULARIZATION FOR THE MCH EQUATION 9

be estimated as

e =¥ 0] = | [ [ 3 ps = (0001 (0,0) = a0, Dt
€ 0 R i Pe i ’ t\vh

N T
<l [ [ ola =)ol = at(0)ldade
i=1
< CpMol|¢ptal|L=Te.
For the second term, by definitions (22) and (24) we can obtain

<UEJVmN,5 o UN,emé\f’ ¢x>

N T N T
;pi/o /RUeN(I)pe(xI?(t))%(z,t)dmdt;pi/o UM (a5 (t)) pa (w5 (1), t)dt

N
;pi/o /RUf (@)pe (@ — i (t)) P (, t)dadt
N T
_ , N () oo (2€(8) — 1 y i
iz_;pl/o /RUe ( )pe( Z(t) )d)x( z(t),t)d dt

N T

=30 [ [ 0N @l — a5 O)oulant) — oulai (0, . 0
=1 “0 /R

Due to [|[UY||p~ < $ME, we have

1
[(UNmNe — UNemd 6] < §CPMS’||¢M||LOCT5,

This ends the proof.

Notice that
(1 - aza:)GE = Pe-

The mollification approximates the Dirac delta function with a ‘blob function’ pe,
which shares some ideas with the traditional blob regularization for vortex sheet [19].
However, our regularization is more than ‘blob regularization’ and the key feature is
the double mollification that guarantees the weak consistency. If we use

%xﬁ(t) = UN(@5(t); {zn }ney)

to define approximate trajectories instead of (20), we will not get the weak consistency
result. Regarding this issue, one can refer to the discussion in Introduction or Lemma
2.5. In Section 5, we find that this regularization has the dispersive effects by studying
the modified equation, which justifies ‘dispersive regularization’ in the title.

2.2. Convergence theorem. In this subsection, we prove global existence of
N-peakon solutions for the mCH equation and this answers the second question (ii)
in Introduction.

THEOREM 2.4. Let m{Y(z) be given by (19) and {x5(t)}X, is defined by (25)
subject to initial data z5(0) = ¢;. u™N¢(z,t) is defined by (21). Then, the following
holds.

This manuscript is for review purposes only.
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267 (i). There exist {x;(t)}}, C C([0,+0c0)), such that x¢ — x; in C([0,T]) as e — 0
268 (in subsequence sense) for any T > 0. Moreover, x;(t) is globally Lipschitz continuous
269 and for a.e. t > 0, we have

d 1

270 (31) —x;(t)| < =MZ for i=1,...,N.
271 dt
272 (ii). Set

N
273 (32) ulN (x,t) = ZpiG(x —z;(t)),
274 =1
275 and we have (in subsequence sense)
376 (33) uMe = 9,u™N = ul in L] (R x [0,+00)) as € — 0.
278 (iii). uN(x,t) is an N-peakon solution to (1).

Proof. (i). Due to G¢ = G * p., we have

1
G|z~ < 5 and ||GEf[~ <
2

N |

279 Hence,

280 (34) [[ulN-€

1 1
, |pee < =My and |[ud€||p- < =My,
281 2 2

282 where My is given in (19). By Definition (24) and (34), we have

283 U™, )] < US| / pe(@)dz < [[u|[Foe + [|00u™ |7
R

59U 1 2 1 2 _ 2

284 (35) < 1M0 + ZMO = —M;

286 Combining (25) and (35), we have

t d t
287 |z (t) — x5 (s)| = / d—:cg(T)dT = / UN<(28(7), 7)dT
S T S
¢ 1
288 (36) < / \UN(28(7), 7)|dr < = ME|t — 5.
289 s 2

290 Foreach 1 <4 < N, by (35) and (36), we know {zf(t) }¢>0 is uniformly (in €) bounded
291 and equi-continuous in [0, 7. For any fixed time T > 0, Arzela-Ascoli theorem implies
292 that there exists a function z; € C([0,7]) and a subsequence {z*}?2, C {z{}e>0,
293 such that z;* — x; in C([0,T]) as k — oo. Then, use a diagonalization argument
294 with respect to T'=1,2,... and we obtain a subsequence (still denoted as x5) of x{
295 such that ¢ — z; in C([0,T]) as € — 0 for any T > 0. Moreover, by (36), we have

1
296 i () = wi(s)| < 5 MGt = s|.

298 Hence, ;(t) is a globally Lipschitz function and (31) holds.

This manuscript is for review purposes only.
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A DISPERSIVE REGULARIZATION FOR THE MCH EQUATION 11

(ii). Because u™¢(x,t) — u™(z,t) and 9,ulN¢(z,t) — ul¥ (x,t) as e — 0 for a.e.
(z,t) € R x [0,400) (for (x,t) # (x;(t),t)), then (33) follows by Lebesgue dominated
convergence theorem.

(iii). Next, we prove that u” given by (32) is a weak solution to the mCH
equation.

Obviously, we have

u™N € C(]0,400); HY(R)) N L>=(0, +-00; WH°(R)).

Similarly as (27), for any test function ¢ € C°(R x [0,00)) we have
<m£\f’ ¢t> + <UN’6m£Va ¢3¢> = _/ ¢(x70)dm(l)vy
R

where (ml, m™€) is defined by (22) and (UY, UN:) is defined by (24). By the

€
consistency result (29), we have

(37) L(u™e, p) +/q§(w,0)dm(l)v —0 as e —0,
R
where
r 1 (7 ,
N,e o N,e . - N,e\3
_ e N,e\3 g N,e\3 N,e N,e\2
(38) 3 /0 /R (u™)? Ppoodadt + /O /R (™€) + u™N e (0,uN )2 ppddt.

(Here, T satisfies supp{¢} C R x [0,T").) We now consider convergence for each term
of L(uMN"<, ).

For the first term on the right hand side of (38), using (33) and the fact that
supp{¢} is compact we can see

T T
/ / U,N’E((Z)t — d)tmx)d.ﬁdt — / / UN(¢t - ¢ta:a:)d$dt as € — 0.
0 R 0 R

The second term can be estimated as follows

/oT /R[(a””“N’E)g — (u))?)pundadt

T
/ /(nguN’6 — uﬁc\f)[(ﬁxuN’e)2 + (uﬁg\’)2 + awuN’EuiV}qﬁmdmdt
o Jr

3
< ZM3||¢M||LOC// |0, u™ ¢ — ul|dedt — 0 as € — 0.
supp{¢}

Similarly, we have the following estimates for the rest terms on the right hand side of
(38):

T
/ /[(UN’E)3 — (UM )3 pppedrdt — 0 as € — 0,
o Jr

T
/ /[(uN’e)3 (W) pudadt — 0 as € — 0,
0 R
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and

T
/ / (0,2 — N (N2 dadt
0 R

= /T / [(u™ — u)(0,u™)? + ulN (9,0 + ul) (0,u™ — ul)] ¢ dadt
— O0 aSRe — 0.
Hence, the above estimates shows that for any test function ¢ € C°(R x [0, 00))
(39) LuNe, ) = LN, ) as € — 0.

Therefore, combining (37) and (39) gives
L.6)+ [ ol 0)dmd =0,
R

which implies that u¥ (x,t) is an N-peakon solution to the mCH equation with initial
date m} (). 0

2.3. A limiting system of ODEs as ¢ — 0. In this section, we derive a system
of ODEs to describe N-peakon solutions by letting e — 0 in (25). First, we give an
important lemma.

LEMMA 2.5. The following equality holds
. €\2 _

Proof. Set F(y) = [Y__ p(x)dz. Because p is an even function, we have

— 00

F(-y)= [ plards - / " o).
Therefore,

(40) Fl)+ F(-) = [ ployia+ [ playin =1

— 00

Furthermore, we have
F(+o00) =1, F(—o00)=0.

Due to pe(z) = pe(—x), we can obtain
= e (@0 = [ ) ([ e rorae) dy
2

1 1 [y 1 [
1 Lo (3 [ gt L [T ety @an) ay
R €J_ €Jy

2

_ i /R () ( /_ yoo e=<le=vl p(z)de — /y h e—elx—ylp(x)dx) g
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Then, by using Lebesgue dominated convergence theorem and (40) we have

tigt. =5 [ ot ([ staras - / oty ) ay

2

1

oo

—1 [ rw-arwy

— 00

L) dy

= i <F(+oo) — 2F?(400) + §F3(+oo)) = %

— 3 Lo - Fera = [ Poa-2rw)a

13

Remark 2.6. The above limit is independent of the mollifier p and intrinsic to the
mCH equation (1). Consider one peakon solution pG(x — z(t)). To obtain the correct
speed for z(t), the right value for G2 at 0 is the limit obtained by Lemma 2.5:

(@)(0) = 75

By the jump condition for piecewise smooth weak solutions to (1) in [11, Equation
(2.2)], the speed for z(t) should be

dx(t 1
WO g2(0) - L6204 + L0116 0-) + G20
implying that the correct value of G2 at 0 is
1, ) 1

):I?

which agrees with the limit obtained by Lemma 2.5. This is different from the precise

representative of the BV function G2 at the discontinuous point 0

1. 9 1
S1G20-) + G2(04)) = 7.

Next, we use Lemma 2.5 to obtain the system of ODEs to describe N-peakon solutions
by letting € — 0 in (25).

PROPOSITION 2.7. For any constants {p;}¥,, {z;}¥
fized compared with x(t) in (21)), denote Nj3 == {1 < 57 < N

Nig={1<j<N:xj=ua;} for1<i<N. Set

and

(Note that z; are constants in U¢(z) comparing with UN-(x,

we have

(41)

lim U¢(x

e—0

ij (x — z;),

U(@) = [pe * (u™)](2) = [pe * (uz )] ().

Zpg z) | = | Y piGalai — ;)

JEN
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Proof. See appendix. O

Remark 2.8 (System of ODEs). From Proposition 2.7, we give a system of ODEs
to describe N-peakon solution u™ (z,t) = SN | p;G(x — i(t)). For 1 <i < N, set

(42)
Nia(t) ={1<j<N:x;(t) #z(t)} and Nipo(t) :={1 <j < N :z;(t) =z(t)}.
The system of ODEs is given by, 1 <i < N,
(43)
N 2 2 2
d 1
S = (ZP]'G(%(U —zj(t))> - ( > PjGw(mi(t)—mj(t))) 12 ( > Pk) .
J=1 JENG1(2) kEN2(2)
Before the collisions of peakons, we can deduce (4) from (43).

Remark 2.9 (nonuniqueness and the change of energy Hy). Consider the initial
two peakons p1d(z — 21(0)) + p2d(x — x2(0)) with 21(0) < 22(0) and 0 < py < p;.
Due to (4), the evolution system before collision for z1(t) and xz5(¢) is given by

d 1 1
—21(t) = =p} + 5pipee™ 720,
dt 6 2
(44) d 1 1
Zao(t) = Zp2 + = z1(t)—z2(t)
220 = gp2 + 5pip2e
Hence, they will collide at finite time T, = %. When ¢ > T, if we assume
1 2
the two peakons stick together, according to (43) the evolution equation is given by
d

1
zi(t) = =(p1 +p2)* t > T, i=1,2.

For i = 1,2, we define

(1) gi by (44) for t < Ty,
(46) (e = {70 gven by () or
x;(t) given by (45) for ¢ > T,

and the sticky peakon weak solution
(47) iz, t) = p1G(x — T1(t)) + p2G(x — To(t)), 1h =10 — lgy.

In this case, the energy Hy (defined by (15)) of this sticky solution m is given by

) %(p% +3) + prpee 720 < T

(48) Ho(iin(t)) = { 2
5(1?1 +p2)*, t>T..
The energy Hj is increasing before T, and Hj is continuous at the collision time T.
If we assume the two peakons cross each other after ¢ > T, (still with amplitudes

p1, p2), then according to (43), the evolution equations for x1(¢) and x5(t) are given

by

d 1 1
—z1(t) = =pf + spipee™ W0 > T
dt 6 2

(49) d 1 1
. t — 2 - xz(t)—il(t) t T*
dtxz( ) sz + 21711?26 , 1>

This manuscript is for review purposes only.
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102 This system is different with (4). For ¢ = 1,2, we define

i(t) given by (44) for ¢ < T,
103 (50) Ei(t) = {a: (t) given by (44) for
xZ

i(t) given by (49) for ¢ > T,

105 and the crossing peakon weak solution

406 (51) a(z,t) = p1G(x — Z1(t)) + p2G(z — ZT2(t)), ™M =1U — Ugy.
408 For the energy Hj of the crossing solution m, we have

(52)
~(p2 + p2) + prpae™ DT < T,

— Do =

1 o
409 Ho(fn,(t)) = 5(])% +p§) +p1p2e—|r1(t)—z2(t)| — , ; ) o
410 5 (P7+p3) + pipoe®2 =T g T

111 Hp increases before time T, and decreases after time T,. Hj is again continuous at
412 the collision time T}.

413 Both the sticky solution u(z,t) and the crossing solution @(x,t) are two global
414  peakon solutions, which proves nonuniqueness of weak solutions to the mCH equation.
415 This nonuniqueness example can also be found in [12, Proposition 4.4].

116 The above example also shows that after collision, peakons can merge into one
417 giving the sticky solution w, or cross each other yielding the crossing solution .
418 Moreover, if we view T} as the start point with one peakon, then the crossing solution
419 u shows the scattering of one peakon. This indicates all the situation mentioned in
420 question (iii) in Introduction.

421 At the end of this section, we give a useful proposition.
422 PROPOSITION 2.10. Let x;(t), 1 < i < N, be N Lipschitz functions in [0,T)
123 with x1(t) < x2(t) < --- < xn(t) and p1,--- ,py are N non-zero constants. Then,

124 ulN(z,t) = vazl p:G(x — x;(t)) is a weak solution to the mCH equation if and only
425 if x;(t) satisfies (4).

Proof. Obviously, we have
u™N € C([0,7); H'(R)) N L*°(0, T; WL (R)).

126 In the following proof we denote u := u”. For any test function ¢ € C(R x [0,7T)),
127 let

T T
428 L(u, d) :/0 /Ru(qﬁt - (j)tm)dxdtf/o /R E(uiqﬁm + U Pran) — (U + wul)g, | dadt

430 =1 + L. I

431 Denote zg := —00, Ty4+1 = +00 and pp = py+1 = 0. By integration by parts for
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space variable z, we calculate I; as

I = /0 ' /R w1 — Grae)dadt = i /0 ' / w(r — braa)dudt

_Z/ /wbﬂ ij wj—w - ij —z; qStm)d:vdt

]<z ]>z
T N
6 = [ S pae.
=1

Similarly, for I we have

T
1
I, = —/ / [(Ui%z-i-u?’(bmm) (u® + uu )q&m} dxdt
o Jrl3
T 1, 1 1
N / Zpi%(%(t)) EP? t3 sz‘pjeajj*“ +3 Zpipjex"ﬂj
0 =1 j<i J>i
+ Z Prpne™™ " | dt
1<m<i<n<N
T N
(55) = / > picha(xi(t))F(t)dt.
0 =1
where
F#) = gpt 5 S pme™ ™ kS pime kY e
6" 24T 2 L ,
Jj<t Jj>t 1<m<i<n<N
Combining (53), (54) and (55) gives

L(u, )

ZPZ/O Zolai(t), dt+/ Zplm wilt ( ()jtxi(t)) it
(56) = - /R o(x,0)dmd + /0 ;pi%(mi(t)) (F(t) - jtxi(t)> dt. 0

N

By Definition 2.2 we know u*" is a weak solution if and only if %zi (t) = F(t), which

is (4).

Remark 2.11. Proposition 2.10 implies the uniqueness of the limiting trajectories
x;(t) before collisions. Consider the two peakon case in Remark 2.9. From Proposition
2.10, we know that solutions to (4) can not be used to construct peakon weak solutions
after ¢ > T,. If we assume 1 (t) > x2(t) when t > T, Proposition 2.10 tells that (49)
is the right evolution equation for z;(t), i = 1, 2.

3. Limiting peakon solutions as ¢ — 0. In this section, we analyze peakon
solutions given by the dispersive regularization.
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3.1. No collisions for the regularized system. In this subsection, we show
that trajectories {x¢(¢)}, obtained by (25) will never collide. Define

1

(57) fiz) = 3

oo _ . 1 0
/ pe(z —y)e Ydy and f5(z) = 5/ pe(z — y)edy.
0

— 0o
Changing variable gives

1

(58) filz) =5

* —X € 1 o xr—
2/ pe(y)e?"*dy and f2($)=§/ pe(y)e Ydy.

It is easy to see that both ff, f§ € C°°(R) and we have the following lemma.

LEMMA 3.1. Let Cy := ||p||L=. Then, the following properties for ff (i =1,2)
hold:

(i)
(69 f3(x) = fil=x), G(z)=fi+f3, and Gi(z)=—fi(z)+ f5(2).
(i)
Co 1

€ € 1 € €
(60) Ifille f2llzee < 55 and |00 fillLee, [10af2llLe < 57 + 5

Proof. (i). The first two equalities in (59) can be easily proved. For the third
one, taking derivative of (58) gives

6)  0fiw) = ypla) — f(w), and Bf5(w) = —spule) + F5(a). 0

2
Hence, we have GS(x) = — ff(x) + f5(z).
(ii). By Definition (57), we can obtain

e c 1
1fillzes, If3llz= < 5
Due to (61) and Cy = ||p|| L, we have
Cy 1
O f1 oo, Oz f5llpe < — —.
1028l 102 S5l < 52+ 5

THEOREM 3.2. Let {z5(t)}Y, be a solution to (25) subject to x5(0) = ¢;, i =
1,...,N and Zfil |pi| < My for some constant My. If c; < ca < -+ < ¢, then
zi(t) < a5(t) < --- < a$y(t) for allt > 0.

Proof. 1f collisions between {z¢}¥ , happen, we assume that the first collision is
between xj, and xj ,, for some 1 <k < N — 1 at time T, > 0. Our target is to prove
T, = 4o0.

By (21) and (59), we have

N N
uN (@ t) = Y piG(r —af) =Y (fix —af) + fi(@ - 25)),
i=1

i=1

and

N N
up (z,t) = Y piGole —af) =Y pi(—file —af) + f(x —a5)).
i=1 i=1
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Hence, we obtain

N N
U (0,0) = (% 4 a2 (e — ) — 4 (zpif;u _ x;>) <Zpiff(w _ x:o) |
=1 =1

From (25), we have

d € € d € €
(62) e = [Pe * UEN](%) and g = [Pe * UGN} (Thg1)-
For ¢t < T, taking the difference gives

a(@ﬂ —zy)

N N
:4/Rpe(y) <2pif2€(332+1 —y- $f)> (Zpiff(xiﬂ -y xj)) dy
i=1 =

N v
- 4/ pe(y) (Zpifﬁ(xi —y- x?)) <Zpiff($i —y— wf)) dy
R i=1 i=1

N N
:4/Rpe(y) <Zpif26($7c+1 —y- x?)) > i (Fi(@fy —y —x5) — fi(zf, —y — 25)) dy
i=1 i
N N
+ 4/ pe(y) (Zpiff(xi —y- w?)) > pi (f5(@hyy —y — a5) — f5(af —y — f)) dy.
R i=1 i=1 I

Combining (59) and (60) yields

i @her = )| <20 Al (1 — )+ 21105 0 — 1)

(63) Sce(‘ri_;,_l - xi), t < T*,

C€:M§<CO+1>.
€

where

Hence, for ¢t < T, we have

€ € d € € € €
(64) —Ce(T)yq — ) < %(xk-ﬁ—l —xzy) < Ce(@hqq — 75,), a

which implies
0 < (cpy1 —ep)e 9t < xg (1) — a2y (t) for t < T,.

By our assumption about Ty, we know T, = +oo. Hence, we have z§(t) < z5(t) <
s < xSy (t) for all £ > 0.

Remark 3.3. Let u™¥ (z,t) = Zf\il G(x — x;(t)) be an N-peakon solution to the
mCH equation obtained by Theorem 2.4. From Theorem 3.2, we have

(65) z1(t) <@a(t) < -+ <an(t).

This result shows that the limit solution allows no crossing between peakons.
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3.2. Two peakon solutions. As mentioned in Introduction, the sticky peakon
solutions given in [12] also satisfy (65). In this subsection, when N = 2, we show
that the limiting N-peakon solutions given in Theorem 2.4 agree with sticky peakon
solutions (see u(x,t) in Remark 2.9). Due to Proposition 2.10, the cases with no
collisions are easy to verify.

Consider the case with a collision for N = 2. When p? > p2 and z1(0) = ¢; <
ca = x2(0), the equations for x;(t) and z2(t) before collisions are given by

Do) = Lp2 4 Lem—aat),
(
ixg(t) — 1p2 + lexl(t)—ﬂﬂz(t)
dt 62" 2 ’
The two peakons collide at Ty, = 6;%2:;21). Next, we prove the following theorem.
1 2

THEOREM 3.4. Assume N = 2 and m}) (x) = p1d(x—c1)+p26(z—ca) with p? > p2
and ¢y < ca. Then, the peakon solution u™ (z,t) = p1G(z — z1(t)) + p2G(z — 2(t))
obtained in Theorem 2.} is a sticky peakon solution, which means

(67) x1(t) = z2(t) for t > Ty := 6;%2__;%1)

To prove Theorem 3.4, we first consider (25) for N = 2. Denote Sc(t) := z5(t) —
x5(t) > 0. By the fact that f{f(—z) = f§(x), we find that

2 =4 / ) [ S5 () + pafa(—Se — )] [PrSE(—y) + pofi (5. — y)]dy

dt e
68) =4 /_ h pe(y) [P1f5 (W) + 2S5 (S + )] [p1f5 (y) + p2fs(Se +y)]dy.

By changing of variables y — —y and using the fact that p. is even, we obtain

Sas=1 [ S~ )+ o) IS5 ) Sy
(69) = 4/jo Ppe(y) [p15(Se +y) + pafs(v)] [p1fi(Se +y) + p2fi(y)]dy

Taking the difference of (68) and (69) gives

d o0
(70)  —Se=4(r — p?)/ PeW) 1) f3(y) = Fi(Se + ) f5(Se + )] dy.
—0o0
We have the following useful proposition, the proof of which is in Appendix.
ProposiTiON 3.5. For any s > 0, we have
: > € € € € 1
(71) lim s [ pu(o)[f@)f5(e) ~ (s + 2) (s + 2)]do = .
The above convergence is uniform about s € [, +00) for any § > 0.
Proof of Theorem 3.4. Let m{ (x) = p16(x — c1) + pad(z — ¢2) for constants p;

and ¢; satisfying

(72) c1 <cy and p? > pi.
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x5 (t) and x§(t) are obtained by (25). From Theorem 3.1, we have x5(¢t) < x§(t) for
any t > 0. By Theorem 2.4, for any T > 0, there are x1(t), z2(t) € C([0,T]) such that

zi(t) = xz1(t) and z5(t) — z2(t) in C(]0,T]), €— 0.
Hence, we have
l’l(t) S ZL’Q(t)

By Proposition 2.10, we know that solution given by Theorem 2.4 is the same as the
sticky peakon solution when ¢ < T.

By (70) and Proposition 3.5, we can see that for any 0 < § < min {(32 —cq, —é(p% —
p?)}, there is a €y > 0 such that when Sc(t) > ¢ we have

%(pg —p}) -6 < %Se(t) < é(pg —p2)+6 <0 forany € < e.
Claim 1: If there exists to > 0 such that S.(tp) < ¢, then S.(t) < d for t > to.
Indeed, if there is t; > to and Sc(t1) > §, we set
to :=inf{t < t; : Sc(s) > 0 for s € (¢,t1)}.
Hence, to > to and S(t2) = 6. Moreover, Sc(t) > ¢ for t € (to,t1). Therefore,

b g 1
Sc(t1) :/ £Se(s)ds+5‘€(t2) < [g(pgfp%)+5 (t1 —t2) + 6 <9,
to

which is a contradiction with S(¢1) > 4.
Claim 2: We have S(¢t) < ¢ for t > % =: ts. If not, from Claim 1 we
have Sc(t) > § for t < t5. Hence, s
ts
o ds
which is a contradiction.
With the above claims, we can obtain

1
Se(ts) = Se(s)ds+cz —c1 < 6@3 —p?) +5}t5 +co—c <9,

6(62 — (31)
2

73 lim S.(t) =0 for t>
(73) fimg Se(t) 712

which implies (67)

Remark 3.6. Though the peakons are not physical particles and they are not
governed by Newton’s laws, we have the analogy of the conservation of momentum
during the collision. Let p be the ‘mass’ of the peakon. The speeds of the two peakons
before collision are %p% + %p1 po and %p% + %pl po respectively. The speed after collision
is &(p1 + p2)?. We can check formally that

1 ) 1, 1 1, 1
(p1 +p2)6(p1 +p2)° =p1 gp1+§p1p2 + p2 észriplpz .

We can then introduce the instantaneous (infinite) “force” as

. 1
Fy=pi[i]o(t —Ty) = gplpz(m —p1)d(t —T.),

where [#1] represents the jump of & at ¢t = T,. Similarly,

. 1
Fy = palio]d(t — Ty) = 6p2p1(p1 —p2)d(t —T.).
Here F} + F5 = 0, which is equivalent to the “local conservation of momentum”.
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3.3. Discussion about three particle system. When N > 3, the limiting
N-peakon solutions obtained by Theorem 2.4 can be complicated. In this subsection,
we study the interactions between three peakon trajectories.

Denote the initial data z1(0) < 22(0) < x3(0) and constant amplitudes of peakons
pi > 0,1=1,2,3. Let z5(¢), i = 1,2,3, be solutions to the regularized system (25)
and x;(t), ¢ = 1,2,3, be the limiting trajectories given by Theorem 2.4. Let z{(¢),
1 = 1,2,3, be trajectories to sticky peakon solutions given in [12]. Before the first
collision time, by Proposition 2.10 we know that z;(t) = z3(t), ¢ = 1, 2,3, which is the
solution to (4). However, after collisions, the limiting trajectories z;(t) may or may
not coincide with the sticky trajectories z{ (). Below, we consider two typical cases.

Sticky case (i). We illustrate this case by an example with py = 4, ps =2, p3 =
1 and z1(0) = =7, 22(0) = —5, 23(0) = —3 (see Figure 1). For the sticky trajectories
(red dashed lines in Figure 1) z3(t), i = 1,2,3, the first collision happens between
x5(t) and x§(t) at time ¢7. Then z3(¢) and z5(¢) sticky together traveling with new
amplitude ps + ps for t € (t7,¢3). Because p1 > p2 + ps, x5 (t) catches up with x5(¢)
and x5(t) at t5. At last, the three peakons all sticky together after t5.

When € > 0 is small, the behavior of trajectories z§(t), i = 1,2,3, given by the
regularized system (25) is very similar to the sticky trajectories (see blue solid lines
in Figure 1). This indicates that x;(t) = x{(¢) for any ¢ > 0 and the limiting peakon
solution given by Theorem 2.4 agrees with the sticky peakon solution.

25

-5 0 5

Fic. 1. p1 =4, p2 =2, p3 =1 and z1(0) = =7, z2(0) = =5, 23(0) = —3; ¢ = 0.02. The
blue lines are trajectories of three peakons {x§ (t)}g’:1 gien by dispersive regularization system (25).
The red dashed lines are trajectories of sticky three peakons.

Sticky and separation case (ii). We illustrate this case by an example with
p1 =4, pp =2, ps =3 and z1(0) = =7, z2(0) = —6, 23(0) = —2 (see Figure 2).
For the sticky trajectories (red dashed lines in Figure 2) z$(t), i = 1,2,3, the first
collision happens between z5(t) and z§(t) at time #;. Then x5(t) and x5(t) sticky
together traveling with new amplitude p; 4 po for ¢ € (1,1). Because p; + pa > ps,
z1(t) and z3(t) catch up with 5(t) at to. At last, the three peakons all sticky together
after ¢o.

When e > 0 is small, the behavior of trajectories z{(t), i = 1,2,3, given by
the regularized system (25) is very similar with the sticky trajectories xf(t) before
T, where z§(t) get close to z5(t). However, when z5(t) comes close to z§(t), x5(¢)
separates from z§(t) around T; and gradually moves to z§(t) and then holds together
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with x§(t). Since pa + p3 > p1, x5(t) and z§(¢) get far away from z§(¢).

This indicates the limiting trajectories x;(t) # zi(t) for ¢ > Ty and the limiting
peakon solution given by Theorem 2.4 does not agree with the sticky peakon solution.
Below, we give some discussions about this interesting phenomenon.

2

0 I
-5 o 5

F1G. 2. p1 =4, p2 =2, p3 =3 and z1(0) = =7, 22(0) = —6, z3(0) = —2; ¢ = 0.02. The blue
lines are trajectories for three peakons {@¢(t)}?_, obtained by dispersive regularization system (25).
The red dashed lines are trajectories of sticky three peakons.

Next, we discuss in detail the limiting solution in cases like Figure 2, i.e. p; >
p2 >0, p1 +p2 > p3s >0, p1 < pa+ p3 and z3(0) — 22(0) > x2(0) — 21(0) > 0.
Consider the limiting solution of the form:

3
u(z,t) = ZPiG(ﬂf —zi(t)),

where z;(t) are Lipschitz continuous and z1 (t) < z2(t) < x3(t). Since z1(0) < z2(0) <
23(0), by Proposition 2.10, x;(t) : ¢ = 1,2, 3 satisfy the following system for ¢ € (0, T\
where T, > 0 is the first collision time:

dl‘lil

— =P+ }plpzef(xrxl) + 1]011!?:367(9:37%1)

dt 6" 2 2 ’

dra 1, 1 . 1 s
(74) 7; = épg + 5pip2e (w2—ae) 4 5P2pse (#a=22) 4 pypge (731,

dl‘g 1 7(1,371,2)'

1 1
Sy —(z3—z1) 4 =
at 6]?3 + 2]?11736 + 2172,’036

Let S; := @41 —2; > 0, i = 1,2. From (74), the distances S; satisfy the following
equations for t < T:

ds 1 1 B 1 B
— = *(pg —pf) + —papse S2 4 —pipse (SlJrsg)7
(75) dt 6 2 2
dS 1 1 B 1 B
2 = Z(p} — p3) — spip2e™ St — Spipse (152,

dt 6 2 2

For the case in Figure 2 to happen, S(0) should be large enough so that Sy (7%) =0
and

—S2(Tx)

1 _ 1
(p3 —p}) + 5P2pse S2(T) 4 5Pipse < 0.
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In other words, So(T.) > S5 > 0, where S3 is defined by:
1 1 _or 1 e
6(103 - i)+ 5P2pse 5 4 5P1pse % =0.
Since Si(t) > 0, while

1 1 _ 1 _
g(pg -pi)+ oP2pse S oPipse ($1+82) < 0,

5) must not be valid for ¢t € (T,, 7T, + or some 0 > 0 and neither does .
75 b lid fa Ty, Ty + 6) fi 6 > 0 and neither d 74

Indeed, the new system of equations must be (4) for N = 2:

d 1 1 PR

Emi(t) = ~(p1 +p2)? + =(p1 + p2)p3e™ D70 =1 2
(76) t 6 2

il’ (t) = 1p2 —+ l(pl _|_p2)p 6I2(t)*z3(t)

dt? 6737 2 3 :

Hence, S1(t) = 0 for t € (T, Ty +0) while Sa(t) keeps decreasing because p1 +pa > ps.
Note that the sticky solutions xzf(t) satisfy (76) until 3 (t) = z5(¢) = z5(¢). On
the contrary, the simulations indicate that z1(¢) and x2(¢) can split when zo(t) < z3(¢)
and then {z;(t)}?_, do not satisfy (76) after the splitting. Define the splitting time
T, as
Ty = inf{t > T, : S1(t) > 0}.
We claim that 77 > Ty := inf{t > 0: S3(t) = S5} > T.. Suppose for otherwise
T) < T», then there exists 6 > 0 such that S;(t) > 0 for ¢t € (11,71 + §) with some
small 6, S1(T1) = 0 and S := infyc(p, 1, 45) S2(t) > 5. For t € (T1,T1 + ), Sy and
Sy must satisfy (75) by Proposition 2.10. Consequently,
d 1 5 9 1 _g 1 _s
%Sl(t) < 6(p2 - pi)+ SP2pse”” + gpipse” < 0, t € (T1, Ty +9).
Since S1(T1) = 0, we must have S1(t) < 0 for ¢t € (T}, Ty +6). This is a contradiction.
Now that (76) holds on (T, T3) while 77 > T3, we find

Ty = T, + 6(52(T%) — S5)/((p1 + p2)* — p3) > T

The question is that when the split happens (i.e. how large can T} be).

Conjecture. At the point of splitting (t = T1), both x1(t) and xo(t) are right-
differentiable, and x1(t) : t > Ty and x2(t) : t > Ty are tangent at t =T .

If this conjecture is valid, then we must have

d
lim —S1(¢t) =0
tir;i+ dt 1(t)

and therefore
T =T,.

In summary, the dispersive regularization limit weak solution is quite different
from the sticky particle model in [12] when N > 3. Another difference we note is that
the sticky particle model has bifurcation instability for the dynamics of three peakon
system: consider a three particles system with initial data: p; = 4,21(0) = —4,
p2 = 3,22(0) € (—4,4) and p3 = 2,23(0) = 4. There exists . € (—4,4) such that in
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the x2(0) > x. cases, the second and third peakons merge first and then they move
apart from the first one (see Figure 3 (b)), while 25(0) < z. implies that the first two
merge first and then they catch up with the third one, merging into a single particle
(see Figure 3 (a)). This is a kind of bifurcation instability due to the initial position
of the second peakon: a little change in z2(0) results in very different solutions at
later time. It seems that the e — 0 limit does not possess such instability due to the
splitting as in Figure 2.

(a) (b)
15} 1051
1.5¢

al t
l L

0.5¢F
05
Te L
0 P — 0

-4 -2 0 X2 4 6 8 10 -4 2 02 4 6 8 10
Fi1c. 3. (a). p1 =4, p2 =3, p3 =2 and 1(0) = —4, z2(0) = —3, x3(0) = 4. The three peakons

merge into one peakon. (b). pr =4, p2 =3, p3 =2 and z1(0) = —4, x2(0) = —2, z3(0) =4. The
three peakons merge into two separated peakons.

4. Mean field limit. In this section, we use a particle method to prove global
existence of weak solutions to the mCH equation for general initial data mg € M(R).
Assume that the initial date mg satisfies

(77) mo € M(R), supp{mo} C (=L, L), My ::/d|m0| < fo0.
R

Let us choose the initial data {¢;}¥; and {p;}; to approximate mg(x). Divide the

interval [—L, L] into N non-overlapping sub-interval I; by using the uniform grid with

size h = % We choose ¢; and p; as

1
(78) cii= =L+ (= 5)h; pizz/ dmg, i=1,2,--- N.

[ci—%.cith)

Hence, we have

N
(79) > Il </[ Aol < Mo
i=1 —L

)

Using (78), one can easily prove that my is approximated by

N
(80) mg (z) ==Y p;d(z — ¢;)
j=1

in the sense of measures. Actually, for any test function ¢ € Cy(R), we know ¢ is
uniformly continuous on [—L, L]. Hence, for any 7 > 0, there exists a § > 0 such that
when z,y € [-L, L] and |z — y| < &, we have |¢(z) — ¢(y)| < n. Hence, choose & < §
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and we have

/}R b(x)dimg — / o(z)dm)

_ ' [ owame— [ oan}
[-L,L] [-L,L]

N
< HZ/[ dlmo| < Mon.
i=1 7l

h h
C *f;ci*i’g)

(81) =

N
o(z) — é(c;))d
;/[Cig,ciJrg)( (l’) (C )) mo
N

Let 7 — 0 and we obtain the narrow convergence from mg' (z) to mo(z).

For initial data m{Y (z), Theorem 2.4 gives a weak solution u™ (x,t) = Ef\il piG(a:—I
x;(t)), where z;(0) = ¢; and p; are given by (78). Moreover, (31) holds for x;(t),
1<i:<N.

Next, we are going to use some space-time BV estimates to show compactness of
u™. To this end, we recall the definition of BV functions.

DEFINITION 4.1. (i). For dimension d > 1 and an open set Q C R, a function
f € LY(Q) belongs to BV (Q) if

Tot.Var{f}:= sup{/gf(x)v ~p(x)dr s g € CHOLRY), ||9]|n= < 1} < 0.

(ii). (Equivalent definition for one dimension case) A function f belongs to BV (R)
if for any {x;} C R, x; < x;41, the following statement holds:

Tot.Var{f}:= ?u;; { Z |f(z;) — f(x1_1)|} < 0.

Remark 4.2. Let Q C R for d > 1 and f € BV(Q). Df := (Dy, f,..., Dy, f) is
the distributional gradient of f. Then, Df is a vector Radon measure and the total
variation of f is equal to the total variation of |Df|: Tot.Var.{f} = |Df|(2). Here,
|Df] is the total variation measure of the vector measure D f ([20, Definition (13.2)]).

If a function f : R — R satisfies Definition 4.1 (ii), then f satisfies Definition (i).
On the contrary, if f satisfies Definition 4.1 (i), then there exists a right continuous
representative which satisfies Definition (ii). See [20, Theorem 7.2] for the proof.

Now, we give some space and time BV estimates about u”, 9,u”, which is similar
to [12, Proposition 3.3].

PROPOSITION 4.3. Assume initial value mg satisfies (77). p; and ¢;, 1 <i < N,
are given by (78) and m}) is defined by (80). Let u™(x,t) = Zivzl p:G(x — z;(¢)
be the N-peakon solution given by Theorem 2.4 subject to initial data m™ (x,0) =
(1 = Ope)ulN (2,0) = mlY (z). Then, the following statements hold.

(i). For any t € [0,00), we have

(82)  Tot.Var{uM(t)} < My, Tot.Var{du"(-,t)} <2My uniformly in N.
(ii).
N 1 N 1 : .
(83) [[u™||pe < §MO, [|0pu™ ]| < §M0 uniformly in N.

(iii). Fort,s € [0,00), we have
(84)
/R|uN(x,t) —uMN(z,s)|dz < %M(ﬂt — s, /R |0 u™ (x,t) — Bpu™ (x,5)|dz < M|t — s|.
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(iv). For any T > 0, there exist subsequences of u¥, ulY (also labeled as u™¥, ulY)

and two functions u, u, € BV(R x [0,T)) such that
(85) uN = u, ud = u, in L, (R x [0, +00)) as N — oo,

and u, u, satisfy all the properties in (i), (i) and (iii).

Proof. See [12, Proposition 3.3]. We remark that the key estimate to prove (84)
is (31). O

With Proposition 4.3, we have the following theorem:

THEOREM 4.4. Let the assumptions in Proposition 4.3 hold. Then, the following
statements hold:
(i). The limiting function u obtained in Proposition 4.3 ((iv)) satisfies

(86) u € C([0, +o00); HY(R)) N L>(0, +o00; WH(R))

and it is a global weak solution of the mCH equation (1).
(ii). For any T > 0, we have

m=(1—0z)u e MR x[0,T))
and there exists a subsequence of m™ (also labeled as m”~ ) such that
(87) m™ S moin MR x [0,T)) (as N — +00).

(iii). For a.e. t > 0 we have (in subsequence sense)

(88) m™ (-, t) > m(-,t) in M(R) as N — +oo
and
Lo Lo
(89) supp{m(-,t)} C (—L_ SMit L+ §M0t),
Proof. The proof is similar to [12, Theorem 3.4] and we omit it. 0

Remark 4.5. We remark that when mg is a positive Radon measure, m is also
positive. Actually, mg € M (R) implies that p; > 0 and m™¢ > 0. Therefore,
the limiting measure m belongs to M (R x [0,T)). By the same methods as in [12,
Theorem 3.5], we can also show that for a.e. ¢ > 0,

(90) m(-,t)(R) = mo(R), |m(-,1)|(R) < |mo|(R).

5. Modified equation and dispersive effects. Note that the regularization
for the N-peakon solutions can be equivalently reformulated as the regularization
performed directly on the equation. We consider the equation

(91) mg + [m(f)e* ((pe*u)2 - (pe*uz)2)>:| :07 m=1u— Ugg-
xr
To see the equivalence, consider its characteristic equation

02) X(&,t) = pe* ((pe *u)? = (pe * uz)?) (X (1), 1),
X(£,0) =€ €R.
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Due to the relation between u and m, we have

93) (po*u)(a) = / pe(z — ) / Gy — 2ym(z)dzdy

We define

(94) Udlz,t):

_ </R G (a — X(e,t))mo(a)d9>2 - (/R G (o — X(e,t))mo(a)d9>2,

and

= / G(x — z)m(z)dz = / G(x — X(0,t))mo(0)do.
R

R

= (pe * u)(2,1) = (pe * us)*(w,1)

U(x,t) = [pe * Ue|(z,t).

Equation (92) can be rewritten as

(95)

X(&,t) = U(X(&1),1),
X(,0)=¢eR.

27

Because the velocity field U€ is bounded and smooth, one may show that Equation

(95) has a global solution for given initial data mg € M(R).

equation (91) has a global solution. Notice that if we let

mo(x) = Zé(a@ —¢), and zi(t) = X(c;,t),

i=1

then System (95) for {z¢(¢)}X; recovers System (20).
Next, we use Equation (91) to justify that our regularization method has disper-
sive effects. For a smooth function f, we have

pes flz) = /R f(& — ey)ply) dy = F(x2) + aé fru(z) + O(Y),

where a is a co

nstant given by

1
a= 5/p(y)y2dy-
R

Using the above fact, we have

Uc = (pe * U)Q - (pe * uw)

and

2 2 2 2
=u’ —uy + 20 (Ulgy — Ugtiy

U =U, — ac’Uepe + O(€*)

=u? - ui + aé? 2(vtyey — UpUzes) + (u2

Hence, the modified equation (91) becomes:

(96) my + [m(

u? — Ui)]z + ae? 2m(utgy — UpUpgs) + m(u2 — ui
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To see that the correction term in the modified equation has dispersive effects, we do
linearization around the constant solution 1. Let w = 1 + dv. We have

M=U—Uge =1+ 00— 0Vzp =1+ n,

where n = v —v,,. Keeping orders up to O(e?) and §, we have the following linearized
equation:

(97) Vi 4 (20 4+ 1)y + 4020400 + O(0) + O(e*) = 0.

The leading term corresponding to the mollification is a dispersive term 4ae2dv,qy.
Hence, our regularization method has dispersive effects.

Appendix A. Proofs of Proposition 2.7 and 3.5.

Proof of Proposition 2.7. Because Zj\;l pjG(x — x;) is continuous, we have

2

N
(98) fi o+ (@) = | o psGlai =)
<

Next we estimate the second term [pe * (ul)2](z;) in U¢(z;). We have

(99)

@@ = [ X pGie-u) | 2 Y pGie - a)mGs e — )
je./\/.ﬂ jeNilykGNiz

2
+ ( > kai(x—xk)> =: Fi(z) + F5(x) + F5(x).

kEN;2

Because G4 (z) is continuous at x; — ;, we have the following estimate for Fy

(100) !ij%(ﬂe * Fy)(wi) = ZN: p;Ge(i — x5)
€N

Because G and p, are even functions, we know G, is an odd function. Next, consider
the second term F¥ on the right hand side of (99). Due to z = z; for k € N2, we
have
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perF)@) =2 S pme / pe(@: — ¥)G<(y — ;)G (y — 2:)dy
JEN;1,kEN 2 R

= Y o[ awciy

JEN1,kEN 2

X (/R [Gx(xi —zj—y—x)—Ggle; —z;+y— m)]pe(m)dx> dy

e
S SRR eIt

JEN;1,kEN2

Ve
X (/ Gulei—xj—y—o)— Gulzs —xj +y —x) pe(x)dac> dy
—Ve
(101) +3 Y pjpk/ pe(y)dy =: It + IS,
JENi1,kEN;2 Ve

Due to x; # x; for j € N1, we can choose € small enough such that
(i —2; —y —@)(zi —2; +y —a) >0, for |2[,|y| < Ve
Hence,
(Gaos = 25—y = ) = Galos — 23 +y — )| < 312 < Ve,

Putting the above estimate into I{ gives

Ve
=2 > pjpk/o pe(y)Gs(—y)

jGNil,k}GNiz
Ve
“\/
—Ve
(102) < Y pipkl-vVe—0 as e—0.
jGNil,kGNiz

Gu(zi—zj—y—x)— Gz, —x; +y—x)

o)

For I§, changing variable gives

oo

=3 Y pjpk/ pe(y)dy
JEN1,kEN 2 Ve
o0

(103) =3 Z pjpk/ ply)dy -0 as ¢ — 0.

1
JEN1,kEN 2 Ve

Combining (101), (102), and (103), we have

(104) lim | (p, * F§) ()] = 0.
e—0
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833 For F$ in (99), using Lemma 2.5 we can obtain

2
834 lim (pe * F3)(i) = gigg)/Rpe(xi ) < > pk/RG(y -z — x)pe(:v)dx> dy

kEN ;2
2 2
835 = D lim/psy(/Gy—xpexd:z:> dy
(zgez/\f:nk)HOR()R( )pe()
2
836 = ( > m) lim [(G5)? * pe] (0)
keEN;2 -
) 2
837 (105) BET ( Z pk) ;
838 kN2

839 where we used z; = z, for k € N5 in the second step. Finally, combining (100), (104)
840 and (105) gives

2

2
. . 1
841 (106) lim [pe * (u)?) () = D ( > pk> + Z piGa(w; —x;) | . O
849 kEN;2 JENG1
843 Combining (98) and (106) gives (41).
Proof of Proposition 3.5. Let
4 pd@fi @) 5(0) ~ s+ ) s+ )] do = I~ I,
where
= [ p@fi@fiade and Ti=1 [ pa)fi(s 0 fi(s + a)d

844  For Ij, by changing of variables, we have

845 If = / p(ﬂf)( / p(y)ee(“")dy>( / p(y)ee(zy)dy)dw

Set

F(z) = /x p(y)dy.

— 00

847 By Lebesgue Dominated convergence Theorem, we have

848 lim I7 = /_Z p(x) (/; p(y)dy> (/; p(y)dy) dz

519 (107) _ /Oo F'(2)F(2)(1 — F(x))de — é

850 —00

851  Similarly, for I§ we have

oo z+§ o)
852 I5 = / p(ﬂﬂ)( / p(y)ee(”m)sdy> < / p(y)ee(my)“dy>dm-
853 -0 —0 T+
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)
When 6 > 0 and s € [d,+00), we have — < g Hence,
€

€

0<I; < /O:o p(fﬂ)(/o:o p(y)dy) (/: p(y)dy>dx
< [“oa( [ : ploiy )

Therefore, the following convergence holds uniformly for s € [§, +-00):

(108) lim I = 0.
e—0
Combining (107) and (108) gives (71). 0
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