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Abstract. We propose the frozen Gaussian approximation for computation

of high frequency wave propagation. This method approximates the solution

to the wave equation by an integral representation. It provides a highly ef-

ficient computational tool based on the asymptotic analysis on phase plane.

Compared to geometric optics, it provides a valid solution around caustics.

Compared to the Gaussian beam method, it overcomes the drawback of beam

spreading. We give several numerical examples to verify that the frozen Gauss-

ian approximation performs well in the presence of caustics and when the

Gaussian beam spreads. Moreover, it is observed numerically that the frozen

Gaussian approximation exhibits better accuracy than the Gaussian beam

method.

1. Introduction

We are interested in developing efficient numerical methods for high frequency

wave propagation. For simplicity and clarity we take the following linear scalar

wave equation to present the idea,

(1.1) ∂2
t u− c2(x)∆u = 0, x ∈ R

d,

with WKB initial conditions,

(1.2)







u0(x) = A0(x)e
ı
ε
S0(x),

∂tu0(x) = 1
εB0(x)e

ı
ε
S0(x),

where u is the wave field, d is the dimensionality and ı =
√
−1 is the imaginary

unit. We assume that the local wave speed c(x) is a smooth function. The small

parameter ε≪ 1 characterizes the high frequency nature of the wave. The proposed

method can be generalized to other types of wave equations [17].
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Numerical computation of high frequency wave propagation is an important

problem arising in many applications, such as electromagnetic radiation and scat-

tering, seismic and acoustic waves traveling, just to name a few. It is a two-scale

problem. The large length scale comes from the characteristic size of the medium,

while the small length scale is the wavelength. The disparity between the two length

scales makes direct numerical computations extremely hard. In order to achieve

accurate results, the mesh size has to be chosen comparable to the wavelength or

even smaller. On the other hand, the domain size is large so that a huge number

of grid points are needed.

In order to compute efficiently high frequency wave propagation, algorithms

based on asymptotic analysis have been developed. One of the most famous exam-

ples is geometric optics. In the method, it is assumed that the solution has a form

of

(1.3) u(t,x) = A(t,x)eıS(t,x)/ε.

To the leading order, the phase function S(t,x) satisfies the eikonal equation,

(1.4) |∂tS|2 − c2(x)|∇xS|2 = 0,

and the amplitude A(t,x) satisfies the transport equation,

∂tA− c2(x)
∇xS

∂tS
· ∇xA+

(

∂2
t S − c2(x)∆S

)

2∂tS
A = 0.

The merit of geometric optics is that it only solves the macroscopic quantities

S(t,x) and A(t,x) which are ε-independent. Computational methods based on the

geometric optics are reviewed in [3, 26].

However, since the eikonal equation (1.4) is of Hamilton-Jacobi type, the solution

of (1.4) becomes singular after the formation of caustics. At caustics, the approx-

imate solution of geometric optics is invalid since the amplitude A(t,x) blows up.

To overcome this problem, Popov introduced Gaussian beam method in [19]. The

single beam solution of the Gaussian beam method has a similar form to geometric

optics,

u(t,x) = A(t,y)eıS̃(t,x,y)/ε.

The difference lies in that the Gaussian beam method uses a complex phase function,

(1.5) S̃(t,x,y) = S(t,y) + p(t,y) · (x − y) +
1

2
(x − y) ·M(t,y)(x − y),

where S ∈ R, p ∈ R
d, M ∈ C

d×d. The imaginary part of M is chosen to be

positive definite so that the solution decays exponentially away from x = y, where

y is called the beam center. This makes the solution a Gaussian function, and

hence the method was named the Gaussian beam method. If the initial wave is not

in a form of single beam, one can approximate it by using a number of Gaussian

beams. The validity of this construction at caustics was analyzed by Ralston in
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[24]. Recently, there have been a series of numerical studies including both the

Lagrangian type [18,22,23,28,29] and the Eulerian type [8–11,14,15,20,21].

The construction of Gaussian beam approximation is based on the truncation

of the Taylor expansion of S̃ around the beam center y up to the quadratic term,

hence it loses accuracy when the width of the beam becomes large, i.e., when the

imaginary part of M(t,y) in (1.5) becomes small so that the Gaussian function

is not localized any more. This happens for example when the solution of the

wave equation spreads (the opposite situation of forming caustics). This is a severe

problem in general, as shown by examples in Section 4. One could overcome the

problem of spreading of beams by doing reinitialization once in a while, see [22,23].

This increases the computational complexity especially when beams spread quickly.

Therefore a method working in both scenario of spreading and caustics is re-

quired. The main idea of the method proposed in the current work is to use

Gaussian functions with fixed widths, instead of using those that might spread

over time, to approximate the wave solution. That is why this type of method is

called frozen Gaussian approximation (FGA). Despite its superficial similarity with

the Gaussian beam method (GBM), it is different at a fundamental level. FGA is

based on phase plane analysis, while GBM is based on the asymptotic solution to a

wave equation with Gaussian initial data. In FGA, the solution to the wave equa-

tion is approximated by a superposition of Gaussian functions living in the phase

space, and each function is not necessarily an asymptotic solution, while GBM uses

Gaussian functions (named as beams) in the physical space, with each individual

beam being an asymptotic solution to the wave equation. The main advantage of

FGA over GBM is that the problem of beam spreading no longer exists.1 Besides,

numerically we observe that FGA has better accuracy than GBM when keeping the

same order of terms in asymptotic series. On the other hand, the solution given

by FGA is asymptotically accurate around caustics where geometric optics breaks

down.

Our work is motivated by the chemistry literature on the propagation of time

dependent Schrödinger equation, where the spreading of solution is a common phe-

nomenon, for example, in the dynamics of a free electron. In [5], Heller introduced

frozen Gaussian wavepackets to deal with this issue, but it only worked for a short

time propagation of order O(~) where ~ is the Planck constant. To make it valid for

longer time of order O(1), Herman and Kluk proposed in [6] to change the weight

of Gaussian packets by adding so-called Herman-Kluk prefactor. Integral represen-

tation and higher order approximations were developed by Kay in [12] and [13].

Recently, the semiclassical approximation underlying the method was analyzed rig-

orously by Swart and Rousse in [27] and also Robert in [25]. We generalize their

1Divergence is still an issue for the Lagrangian approach, one needs to work in the Eulerian

framework to completely solve the problem, which is considered in [17].
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ideas for propagation of high frequency waves, aiming at developing an efficient

computational method. We decompose waves into several branches of propagation,

and each of them is approximated using Gaussian functions on phase plane. Their

centers follow different Hamiltonian dynamics for different branches. Their weight

functions, which are analogous to the Herman-Kluk prefactor, satisfy new evolution

equations derived from asymptotic analysis.

The rest of paper is organized as follows. In Section 2, we state the formulations

and numerical algorithm of the frozen Gaussian approximation. In Section 3, we

provide asymptotic analysis to justify the formulations introduced in Section 2. The

numerical examples are given in Section 4 to verify the accuracy and to compare the

frozen Gaussian approximation (FGA) with the Gaussian beam method (GBM).

In Section 5, we discuss the efficiency of FGA in comparison with GBM and higher

order GBM, with some comments on the phenomenon of error cancellation, and we

give some conclusive remarks in the end.

2. Formulation and algorithm

In this section we present the basic formulation and the main algorithm of the

frozen Gaussian approximation (FGA), and leave the derivation to the next section.

2.1. Formulation. FGA approximates the solution to the wave equation (1.1) by

the integral representation,

(2.1)

uFGA(t,x) =
1

(2πε)3d/2

∫

R3d

a+(t, q,p)e
ı
ε
Φ+(t,x,y,q,p)u+,0(y) dy dp dq

+
1

(2πε)3d/2

∫

R3d

a−(t, q,p)e
ı
ε
Φ−(t,x,y,q,p)u−,0(y) dy dpdq,

where u±,0 are determined by the initial value,

(2.2) u±,0(x) = A±(x)e
ı
ε
S0(x),

with

A±(x) =
1

2

(

A0(x) ± ıB0(x)

c(x)|∂xS0(x)|

)

.

The equation (2.1) implies that the solution consists of two branches (“±”).

In (2.1), Φ± are the phase functions given by

(2.3) Φ±(t,x,y, q,p) = P±(t, q,p) · (x − Q±(t, q,p)) − p · (y − q)

+
ı

2
|x − Q±(t, q,p)|2 +

ı

2
|y − q|2.

Given q and p as parameters, the evolution of Q± and P± are given by the equation

of motion corresponding to the Hamiltonian H± = ±c(Q±)|P±|,

(2.4)











dQ±
dt

= ∂P ±
H± = ±c P±

|P±|
,

dP±
dt

= −∂Q±
H± = ∓∂Q±

c|P±|,
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with the initial conditions Q±(0, q,p) = q and P±(0, q,p) = p. The evolution

equation of a± is given by

(2.5)

da±
dt

= ±a±
2

( P±
|P±|

· ∂Q±
c− (d− 1)ı

|P±|
c
)

± a±
2

tr

(

Z−1
± ∂zQ±

(

2
P±
|P±|

⊗ ∂Q±
c

− ıc

|P±|
(P± ⊗ P±

|P±|2
− I
)

− ı|P±|∂2
Q±

c
)

)

with the initial condition,

a±(0, q,p) = 2d/2.

In (2.5), P± and Q± are evaluated at (t, q,p), c and ∂Q±
c are evaluated at Q±, I

is the identity matrix, and we have introduced short hand notations

(2.6) ∂z = ∂q − ı∂p, Z± = ∂z(Q± + ıP±).

The evolution of the weight a± is analogous to the Herman-Kluk prefactor [6].

Remark. 1. The equation (2.5) can be reformulated as

(2.7)
da±
dt

= ±a±
P±
|P±|

· ∂Q±
c+

a±
2

tr

(

Z−1
±

dZ±
dt

)

.

When c is constant, (2.7) has an analytical solution a± = (detZ±)1/2 with the

branch of square root determined continuously in time by the initial value.

2. ∂zQ± and ∂zP± satisfy the following evolution equations

d(∂zQ±)

dt
= ±∂zQ±

∂Q±
c⊗ P±

|P±|
± c∂zP±

(

I

|P±|
− P± ⊗ P±

|P±|3
)

,(2.8)

d(∂zP±)

dt
= ∓∂zQ±∂

2
Q±

c|P±| ∓ ∂zP±
P± ⊗ ∂Q±

c

|P±|
.(2.9)

One can solve (2.8)-(2.9) to get ∂zQ± and ∂zP± in (2.5). This increases the

computational cost, but avoids the errors of using divided difference to approximate

derivative.

Notice that (2.1) can be rewritten as

(2.10)

uFGA(t,x) =

∫

R2d

a+

(2πε)3d/2
ψ+e

ı
ε
P +·(x−Q+)− 1

2ε
|x−Q+|2 dpdq

+

∫

R2d

a−
(2πε)3d/2

ψ−e
ı
ε
P −·(x−Q−)− 1

2ε
|x−Q−|2 dp dq,

where

(2.11) ψ±(q,p) =

∫

Rd

u±,0(y)e−
ı
ε
p·(y−q)− 1

2ε
|y−q|2 dy.

Therefore, the method first decomposes the initial wave into several Gaussian func-

tions in phase space, and then propagate the center of each function along the
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characteristic lines while keeping the width of the Gaussian fixed. This vividly

explains the name frozen Gaussian approximation of this method.

The formulation above gives the leading order frozen Gaussian approximation

with an error of O(ε). It is not hard to obtain higher order approximations by

the asymptotics presented in Section 3. We will focus mainly on the leading order

approximation in this paper and leave the higher order corrections and rigorous

numerical analysis to future works.

2.2. Algorithm. We first give a description of the overall algorithm. To construct

the frozen Gaussian approximation on a mesh of x, one needs to compute the

integral (2.10) numerically with a mesh of (q,p). This will relate to the numerical

computation of (2.11) with a mesh of y. Hence three different meshes are needed

in the algorithm. Moreover, the stationary phase approximation implies that ψ± in

(2.11) is localized around the submanifold p = ∇qS0(q) on phase plane for WKB

initial conditions (1.2) when ε is small. This means we only need to put the mesh

grids of p around ∇qS0(q) initially to get a good approximation of the initial value.

A one-dimensional example is given to illustrate this localization property of ψ± in

Figure 1 (left). The associated mesh grids are shown in Figure 1 (right).

q

p

0 0.5 1 1.5
−1

−0.5

0

0.5

0.05

0.1

0.15

0.2

0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

q

p

Figure 1. Left: an illustration of the localization of ψ+ on (q, p)

domain for u+,0(y) = exp
(

ı sin(6y)
12ε

)

, ε = 1/128; the black solid

curve is p = cos(6q)/2. Right: the corresponding mesh grids of

(q, p).

Next we describe in details all the meshes used in the algorithm.

(1) Discrete mesh of (q,p) for initializing Q,P . Denote δq = (δq1, · · · , δqd)
and δp = (δp1, · · · , δpd) as the mesh size. Suppose q0 = (q01 , · · · , q0d) is the

starting point, then the mesh grids qk, k = (k1, · · · , kd), are defined as

qk =
(

q01 + (k1 − 1)δq1, · · · , q0d + (kd − 1)δqd
)

,

where kj = 1, · · · , Nq for each j ∈ {1, · · · , d}.
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The mesh grids pk,ℓ, ℓ = (ℓ1, · · · , ℓd), are defined associated with the

mesh grids qk,

pk,ℓ =
(

∂q1
S0(q

k) + ℓ1δp1, · · · , ∂qd
S0(q

k) + ℓdδpd

)

,

where ℓj = −Np, · · · , Np for each j ∈ {1, · · · , d}.
(2) Discrete mesh of y for evaluating ψ± in (2.11). δy = (δy1, · · · , δyd) is the

mesh size. Denote y0 = (y0
1 , · · · , y0

d) as the starting point. The mesh grids

ym are, m = (m1, · · · ,md),

ym =
(

y0
1 + (m1 − 1)δy1, · · · , y0

d + (md − 1)δyd

)

,

where mj = 1, · · · , Ny for each j ∈ {1, · · · , d}.
(3) Discrete mesh of x for reconstructing the final solution. δx = (δx1, · · · , δxd)

is the mesh size. Denote x0 = (x0
1, · · · , x0

d) as the starting point. The mesh

grids xn are, n = (n1, · · · , nd),

xn =
(

x0
1 + (n1 − 1)δx1, · · · , x0

d + (nd − 1)δxd

)

,

where nj = 1, · · · , Nx for each j ∈ {1, · · · , d}.
With the preparation of the meshes, we introduce the algorithm as follows.

Step 1. Decompose the initial conditions (1.2) into two branches of waves according

to (2.2).

Step 2. Compute the weight function ψ± by (2.11) for (Q,P ) initialized at (qk,pk,ℓ),

(2.12) ψ±(qk,pk,ℓ) =
∑

m

e
ı
ε
(−pk,ℓ·(ym−qk)+ ı

2
|ym−qk|2)

× u±,0(y
m)rθ(|ym − qk|)δy1 · · · δyd,

where rθ is a cutoff function such that rθ = 1 in the ball of radius θ > 0

centered at origin and rθ = 0 outside the ball.

Step 3. Solve (2.4)-(2.5) with the initial conditions

Q±(0, qk,pk,ℓ) = qk, P±(0, qk,pk,ℓ) = pk,ℓ,

a±(0, qk,pk,ℓ) = 2d/2,

by standard numerical integrator for ODE, for example the fourth-order

Runge-Kutta scheme. Denote the numerical solutions as (Qk,ℓ
± ,P k,ℓ

± ) and

ak,ℓ
± .

Step 4. Reconstruct the solution by (2.10),

(2.13)

uFGA(t,xn) =
∑

k,ℓ

(

ak,ℓ
+ r+θ

(2πε)3d/2
ψ+(qk,pk,ℓ)e

ı
ε
P

k,ℓ

+
·(xn−Q

k,ℓ

+
)− 1

2ε
|xn−Q

k,ℓ

+
|2

+
ak,ℓ
− r−θ

(2πε)3d/2
ψ−(qk,pk,ℓ)e

ı
ε
P

k,ℓ

−
·(xn−Q

k,ℓ

−
)− 1

2ε
|xn−Q

k,ℓ

−
|2
)

× δq1 · · · δqdδp1 · · · δpd,
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where r±θ = rθ(|xn − Q
k,ℓ
± |).

Remark. 1. In setting up the meshes, we assume that the initial condition (1.2)

either has compact support or decays sufficiently fast to zero as x → ∞ so that we

only need finite number of mesh points in physical space.

2. The role of the truncation function rθ is to save computational cost, since

although a Gaussian function is not localized, it decays quickly away from the

center. In practice we take θ = O(
√
ε), the same order as the width of each

Gaussian, when we evaluate (2.12) and (2.13) numerically.

3. There are two types of errors present in the method. The first type comes from

the asymptotic approximation to the wave equation. This error can not be reduced

unless one includes higher order corrections. The other type is the numerical error

which comes from two sources: one is from the ODE numerical integrator; the

other is from the discrete approximations of integrals (2.10) and (2.11). It can

be reduced by either taking small mesh size and time step or using higher order

numerical methods.

4. Note that the assumption that the initial conditions are either compactly

supported or decay quickly implies that the values on the boundary are zero (or

close to zero). Then (2.12) and (2.13) are the trapezoidal rules to approximate

(2.11) and (2.10). Notice that, due to the Gaussian factor, the integrand functions

in (2.11) and (2.10) are exponentially small unless x − Q and y − q are in the

order of O(ε1/2), which implies their derivatives with respect to y, q, p are of the

order O(ε−1/2). This suggests δy, δq, δp should be taken as the size of O(
√
ε).

Hence Ny and Nq are of order O(ε−d/2). As illustrated in Figure 1, Np is usually

taken as O
( √

ε
minj δpj

)

, which is of order O(1). Nx is not constrained by ε, and is

only determined by how well represented one wants the final solution.

5. Step 2 and 4 can be expedited by making use of the discrete fast Gaussian

transform, as in [22,23].

3. Asymptotic derivation

We now derive the formulation shown in Section 2 using asymptotic analysis.

We start with the following ansatz for the wave equation (1.1),

(3.1)

u(t,x) =
1

(2πε)3d/2

∫

R3d

a+(t, q,p)e
ı
ε
Φ+(t,x,y,q,p)u+,0(y) dy dpdq

+
1

(2πε)3d/2

∫

R3d

a−(t, q,p)e
ı
ε
Φ−(t,x,y,q,p)u−,0(y) dy dp dq,

where Φ± are given by

(3.2) Φ±(t,x,y, q,p) = S±(t, q,p) + P±(t, q,p) · (x − Q±(t, q,p)) − p · (y − q)

+
ı

2
|x − Q±(t, q,p)|2 +

ı

2
|y − q|2.
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The initial conditions are taken as

(3.3)
Q±(0, q,p) = q, P±(0, q,p) = p,

S±(0, q,p) = 0, a±(0, q,p) = 2d/2.

The subscript ± indicates the two branches that correspond to two different

Hamiltonian,

(3.4) H+(Q+,P+) = c(Q+)|P+|, H−(Q
−
,P

−
) = −c(Q

−
)|P

−
|.

P± and Q± satisfy the equation of motion given by the Hamiltonian H±

(3.5)











∂tQ± = ∂P ±
H± = ±c P±

|P±|
,

∂tP± = −∂Q±
H± = ∓∂Q±

c|P±|.

By plugging (3.1) into (1.1), the leading order terms show that the evolution of

S± simply satisfies

(3.6) ∂tS± = 0.

This implies S±(t, q,p) = 0. Hence we omit the terms S± in Section 2 and later

calculations.

Before proceeding further, let us state some lemmas that will be used.

Lemma 3.1. For u ∈ L2(Rd), it holds

(3.7) u(x) =
1

(2πε)3d/2

∫

R3d

2d/2e
ı
ε
Φ±(0,x,y,q,p)u(y) dy dp dq.

Proof. By the initial conditions (3.3),

(3.8) Φ±(0,x,y, q,p) = p · (x − q) − p · (y − q) +
ı

2
|x − q|2 +

ı

2
|y − q|2.

Therefore, (3.7) is just the standard wave packet decomposition in disguise (see for

example [4]). �

The proof of the following important lemma follows the one of Lemma 3 in [27].

Lemma 3.2. For any vector a(y, q,p) and matrix M(y, q,p) in Schwartz class

viewed as functions of (y, q,p), we have

(3.9) a(y, q,p) · (x − Q) ∼ −ε∂zk
(ajZ

−1
jk ),

and

(3.10) (x−Q) ·M(y, q,p)(x−Q) ∼ ε∂zl
QjMjkZ

−1
kl + ε2∂zm

(

∂zl
(MjkZ

−1
kl )Z−1

jm

)

,

where Einstein’s summation convention has been used.

Moreover, for multi-index α that |α| ≥ 3,

(3.11) (x − Q)α ∼ O(ε|α|−1).
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Here we use the notation f ∼ g to mean that

(3.12)

∫

R3d

fe
ı
ε
Φ± dy dp dq =

∫

R3d

ge
ı
ε
Φ± dy dpdq.

Proof. Since the proof is exactly the same for the cases of Φ+ and Φ−, we omit the

subscript ± for simplicity. As a and M are in Schwartz class, all the manipulations

below are justified.

Observe that at t = 0,

−(∂qQ)P + p = 0, (∂pQ)P = 0.

Using (3.5), we have

∂t

(

−(∂qQ)P + p
)

= −∂q (∂tQ) P − ∂qQ∂tP

= −∂q

(

c
P

|P |

)

P + ∂qQ∂Qc|P |

= 0.

Analogously we have ∂t

(

(∂pQ)P
)

= 0. Therefore for all t > 0,

−(∂qQ)P + p = 0, (∂pQ)P = 0.

Then straightforward calculations yield

∂qΦ = (∂qP − ı∂qQ)(x − Q) − ı(y − q),

∂pΦ = (∂pP − ı∂pQ)(x − Q) − (y − q),

which implies that

(3.13) ı∂zΦ = Z(x − Q),

where ∂z and Z are defined in (2.6). Note that, Z can be rewritten as

Z = ∂z(Q + ıP ) =
(

−ıI I
)

(

∂qQ ∂pQ

∂qP ∂pP

)(

ıI

I

)

,

where I stands for the d× d identity matrix. Therefore, define

F =

(

∂qQ ∂pQ

∂qP ∂pP

)

,

then

Z∗Z =
(

−ıI I
)

FT

(

I ıI

−ıI I

)

F

(

ıI

I

)

=
(

−ıI I
)

FTF

(

ıI

I

)

+
(

−ıI I
)

FT

(

0 ıI

−ıI 0

)

F

(

ıI

I

)

=
(

−ıI I
)

FTF

(

ıI

I

)

+ 2I.
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In the last equality, we have used the fact that

FT

(

0 ıI

−ıI 0

)

F =

(

0 ıI

−ıI 0

)

,

due to the Hamiltonian flow structure. Therefore Z∗Z is positive definite for all t,

which implies Z is invertible and

(3.14) (x − Q) = ıZ−1∂zΦ.

Using (3.14), one has
∫

R3d

a · (x − Q)e
ı
ε
Φ dy dpdq = ε

∫

R3d

ajZ
−1
jk

( ı

ε
∂zk

Φ
)

e
ı
ε
Φ dy dp dq

= −ε
∫

R3d

∂zk

(

ajZ
−1
jk

)

e
ı
ε
Φ dy dpdq,

where the last equality is obtained from integration by parts. This proves (3.9).

Making use of (3.9) twice produces (3.10)

(x − Q) ·M(x − Q) = (x−Q)jMjk(x−Q)k

∼ −ε∂zl

(

(x−Q)jMjkZ
−1
kl

)

= ε∂zl
QjMjkZ

−1
kl − ε(x−Q)j∂zl

(MjkZ
−1
kl )

∼ ε∂zl
QjMjkZ

−1
kl + ε2∂zm

(

∂zl
(MjkZ

−1
kl )Z−1

jm

)

.

By induction it is easy to see that (3.11) is true.

�

3.1. Initial value decomposition. By (3.2) and (3.5) we obtain that

(3.15)

∂tΦ± = −P± · ∂tQ± + (∂tP± − ı∂tQ±) · (x − Q±)

= ∓c|P±| ∓ (x − Q±) ·
(

|P±|∂Q±
c+ ı

P±
|P±|

c
)

,

and in particular for t = 0,

(3.16) ∂tΦ±(0,x,y, q,p) = ∓c|p| ∓ (x − q) ·
(

|p|∂qc+ ı
p

|p|c
)

.

The ansatz (3.1) shows that

(3.17)

u(0,x) =
1

(2πε)3d/2

∫

R3d

a+(0, q,p)e
ı
ε
Φ+(0,x,y,q,p)u+,0(y) dy dpdq

+
1

(2πε)3d/2

∫

R3d

a−(0,p, q)e
ı
ε
Φ−(0,x,y,q,p)u−,0(y) dy dp dq,

and

(3.18)

∂tu(0,x) =
1

(2πε)3d/2

∫

R3d

(

∂ta+ +
ıa+

ε
∂tΦ+

)

e
ı
ε
Φ+(0,x,y,q,p)u+,0(y) dy dpdq

+
1

(2πε)3d/2

∫

R3d

(

∂ta− +
ıa−
ε
∂tΦ−

)

e
ı
ε
Φ−(0,x,y,q,p)u−,0(y) dy dpdq.
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We take

a±(0, q,p) = 2d/2,(3.19)

u+,0(x) = A+(x)e
ı
ε
S0(x),(3.20)

u−,0(x) = A−(x)e
ı
ε
S0(x),(3.21)

with

(3.22) A±(x) =
1

2

(

A0(x) ± ıB0(x)

c(x)|∂xS0(x)|

)

.

We next show that this will approximate the initial condition to the leading order

in ε.

Substituting (3.19)-(3.22) into (3.17) and using Lemma 3.1, we easily confirm

that

u(0,x) = u+,0(x) + u−,0(x) = A0(x)e
ı
ε
S0(x).

For the initial velocity, we substitute (3.19)-(3.22) into (3.18) and keep only the

leading order terms in ε. According to Lemma 3.2, only the term ∓c|p| in ∂tΦ±
will contribute to the leading order, since the other terms that contain (x− q) are

O(ε). Hence,

∂tu(0,x) = − 2d/2

(2πε)3d/2

∫

R3d

ı

ε
c(q)|p|e ı

ε
Φ+(0,x,y,q,p)u+,0(y) dy dp dq

+
2d/2

(2πε)3d/2

∫

R3d

ı

ε
c(q)|p|e ı

ε
Φ−(0,x,y,q,p)u−,0(y) dy dp dq + O(1).

Consider the integral
∫

Rd

c(q)|p|e− ı
ε
p·(y−q)− 1

2ε
|y−q|2A±(y)e

ı
ε
S0(y) dy =

∫

Rd

c(q)|p|A±(y)e
ı
ε
Θ(y,q,p) dy.

The phase function Θ is given by

Θ(y, q,p) = −p · (y − q) +
ı

2
|y − q|2 + S0(y).

Clearly, Im Θ ≥ 0 and Im Θ = 0 if and only if y = q. The derivatives of Θ with

respect to y are

∂yΘ = −p + ∂yS0(y) + ı(y − q),

∂2
yΘ = ∂2

yS0(y) + iI.

Hence, the first derivative vanishes only when y = q and p = ∂yS0(y), and

det ∂2
yΘ 6= 0. Therefore, we can apply stationary phase approximation with com-

plex phase (see for example [7]) to conclude, for (q,p) ∈ R
2d,

∫

Rd

c(q)|p|e− ı
ε
p·(y−q)− 1

2ε
|y−q|2A±(y)e

ı
ε
S0(y) dy

=

∫

Rd

c(y)|∂yS0(y)|e− ı
ε
p·(y−q)− 1

2ε
|y−q|2A±(y)e

ı
ε
S0(y) dy + O(ε).
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Therefore,

(3.23)

∂tu(0,x) = − 2d/2

(2πε)3d/2

∫

R3d

ı

ε
c(y)|∂yS0(y)|e ı

ε
Φ+(0,x,y,q,p)u+,0(y) dy dp dq

+
2d/2

(2πε)3d/2

∫

R3d

ı

ε
c(y)|∂yS0(y)|e ı

ε
Φ−(0,x,y,q,p)u−,0(y) dy dpdq + O(1).

Substitute (3.22) into (3.23) and use Lemma 3.1, then

∂tu(0,x) =
1

ε
B0(x)e

ı
ε
S0(x),

which agrees with (1.2).

3.2. Derivation of the evolution equation of a±. In order to derive the evo-

lution equation for the weight function a, we carry out the asymptotic analysis of

the wave equation (1.1) using the ansatz (3.1) in this section. As the equation (1.1)

is linear, we can deal with the two branches separately. In the following, we only

deal with the “+” branch that corresponds to H+, and the other is completely

analogous. For simplicity, we drop the subscript “+” in the notations.

Substituting (3.1) into the equation (1.1) (keeping only the “+” branch) gives

∂2
t u =

1

(2πε)3d/2

∫

R3d

(

∂2
t a+ 2

ı

ε
∂ta∂tΦ +

ı

ε
a∂2

t Φ − 1

ε2
a(∂tΦ)2

)

eıΦ/εu0 dy dpdq,

and

∆u =
1

(2πε)3d/2

∫

R3d

( ı

ε
∆Φ − 1

ε2
(∂xΦ · ∂xΦ)

)

aeıΦ/εu0 dy dp dq.

Squaring both sides of (3.15) yields

(3.24) (∂tΦ)2 = c2|P |2 +
(

(x − Q) ·
(

|P |∂Qc+ ıc
P

|P |
))2

+ 2c|P |(x − Q) ·
(

|P |∂Qc+ ıc
P

|P |
)

.

Differentiating (3.15) with respect to t, one has

(3.25)

∂2
t Φ = −∂t(|P |c) + ∂tQ ·

(

|P |∂Qc+ ı
P

|P |c
)

− (x − Q) ·
(

∂Qc
P · ∂tP

|P | + ∂2
Qc · ∂tQ|P |

+ ıc
∂tP

|P | − ıcP
P · ∂tP

|P |3 + ı
P

|P |∂Qc · ∂tQ
)

.

We simplify the last equation using (2.4),

(3.26)

∂2
t Φ = cP · ∂Qc+ ıc2

− (x − Q) ·
(

−∂QcP · ∂Qc+ c∂2
Qc · P

− ıc∂Qc+ 2ıcP
P · ∂Qc

|P |2
)

.
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Taking derivatives with respect to x produces

(3.27) ∂xΦ = P + ı(x − Q),

(3.28) ∂xΦ · ∂xΦ = |P |2 + 2ıP · (x − Q) − |x − Q|2,

and

(3.29) ∆Φ = dı.

We next expand c(x) around the point Q,

(3.30) c(x) = c+ ∂Qc · (x − Q) +
1

2
(x − Q) · ∂2

Qc(x − Q) + O(|x − Q|)3,

and

(3.31) c2(x) = c2 + 2c∂Qc · (x − Q) + (∂Qc · (x − Q))2

+ c(x − Q) · ∂2
Qc(x − Q) + O(|x − Q|)3.

The terms c, ∂Qc and ∂2
Qc on the right hand sides are all evaluated at Q.

Substituting all the above into the wave equation (1.1) and keeping only the

leading order terms give

2
ı

ε
∂ta(−c|P |)u+

ı

ε
a(cP · ∂Qc+ ıc2)u

− 1

ε2
a
(

2c(x − Q) · (|P |2∂Qc+ ıcP ) +
(

(x − Q) · (|P |∂Qc+ ıcP /|P |)
)2
)

u

− c2
(

−1

ε
ad− 2ı

ε2
aP · (x − Q) +

1

ε2
a|x − Q|2

)

u

+
2

ε2
ac∂Qc · (x − Q)(|P |2 + 2ıP · (x − Q))u

+
1

ε2
a|P |2

(

(∂Qc · (x − Q))2u+ c(x − Q) · ∂2
Qc(x − Q)

)

u ∼ O(1).

After reorganizing the terms, we get

(3.32) 2
ı

ε
c|P |∂tau ∼ ı

ε
a(cP · ∂Qc− (d− 1)c2ı)u− 1

ε2
a(x − Q) ·M(x − Q)u,

where

(3.33) M = (|P |∂Qc− ıcP /|P |) ⊗ (|P |∂Qc− ıcP /|P |) + c2I

− |P |2∂Qc⊗ ∂Qc− |P |2c∂2
Qc.

Lemma 3.2 shows that

(3.34) a(x − Q) ·M(x − Q)u ∼ εa tr(Z−1∂zQM)u+ O(ε2).
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Therefore, to the leading order, we obtain the evolution equation of a,

(3.35) ∂ta =
a

2

( P

|P | · ∂Qc−
(d− 1)ı

|P | c
)

+
a

2
tr

(

Z−1∂zQ
(

2
P

|P | ⊗ ∂Qc−
ıc

|P |
(P ⊗ P

|P |2 − I
)

− ı|P |∂2
Qc
)

)

.

Notice that

dZ

dt
= ∂z

(

dQ

dt
+ ı

dP

dt

)

= ∂z

(

c
P

|P | − ı∂Qc|P |
)

= ∂zQ
∂Qc⊗ P

|P | + c∂zP
( I

|P | −
P ⊗ P

|P |3
)

− ı∂zQ∂2
Qc|P | − ı∂zP

P ⊗ ∂Qc

|P | ,

and

− (d− 1)ı

|P | c = tr

(

Z−1(∂zQ + ı∂zP )
ıc

|P |
(P ⊗ P

|P |2 − I
)

)

.

By using the fact that (3.34) has a quadratic form, one has

tr

(

Z−1∂zQ
P

|P | ⊗ ∂Qc

)

= tr

(

Z−1∂zQ
∂Qc

|P | ⊗ P

)

.

Hence (3.35) can be reformulated as

da

dt
= a

P

|P | · ∂Qc+
a

2
tr

(

Z−1 dZ

dt

)

.

This completes the asymptotic derivation. We remark that in the case of time

dependent Schrödinger equation, the asymptotics have been made rigorous in [25,

27].

4. Numerical examples

In this section, we give both one and two dimensional numerical examples to

justify the accuracy of the frozen Gaussian approximation (FGA). Without loss of

generality, we only consider the wave propagation determined by the “+” branch

of (2.1) which implies that B0(x) = −ı|∇xS0(x)|A0(x) in (1.2).

4.1. One dimension. Using one-dimensional examples in this section, we compare

FGA with the Gaussian beam method (GBM) in both the accuracy and the per-

formance when beams spread in GBM. We denote the solution of GBM as uGBM,

and summarize its discrete numerical formulation (only the “+” branch) as follows

for readers’ convenience ([14,24,29]),

uGBM(t, x) =

Ny0
∑

j=1

(

1

2πǫ

)
1
2

rθ(|x− yj |)A(t, yj)

× exp
( ı

ε
(S(t, yj) + ξ(t, yj)(x− yj) +M(t, yj)(x− yj)

2/2)
)

δy0,
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and yj , ξ, S, M, A satisfy

dyj

dt
= c(yj)

ξ

|ξ| , yj(0) = yj
0,

dξ

dt
= −∂yj

c(yj)|ξ|, ξ(0) = ∂yj
S0(yj),

dS

dt
= 0, S(0) = S0(yj),

dM

dt
= −2∂yj

c(yj)
ξ

|ξ|M − ∂2
yj
c(yj)|ξ|, M(0) = ∂2

yj
S0(yj) + ı,

dA

dt
=

1

2
∂yj

c(yj)
ξ

|ξ|A, A(0) = A0(yj),

where rθ is the cutoff function, yj
0’s are the equidistant mesh points, δy0 is the mesh

size and Ny0
is the total number of the beams initially centered at yj

0.

Example 4.1. The wave speed is c(x) = x2. The initial conditions are

u0 = exp
(

−100(x− 0.5)2
)

exp
( ıx

ε

)

,

∂tu0 = − ı

ε
exp
(

−100(x− 0.5)2
)

exp
( ıx

ε

)

.

The final time is T = 0.5. We plot the real part of the wave field obtained by

FGA compared with the true solution in Figure 2 for ε = 1/64, 1/128, 1/256. The

true solution is computed by the finite difference method using the mesh size of

δx = 1/212 and the time step of δt = 1/218 for domain [0, 2]. Table 1 shows the

ℓ∞ and ℓ2 errors of both the FGA solution uFGA and the GBM solution uGBM.

The convergence orders in ε of ℓ∞ and ℓ2 norms are 1.08 and 1.17 separately for

FGA, and 0.54 and 0.57 for GBM. We observe a better accuracy order of FGA than

GBM.

We choose δt = 1/211 for solving the ODEs and δx = 1/212 to construct the

final solution in both FGA and GBM. In FGA, we take δq = δp = δy = 1/27, Nq =

128, Np = 45 for ε = 1/128, 1/256 and δq = δp = δy = 1/25, Nq = 32, Np = 33

for ε = 1/64. In GBM, we take δy0 = 1/27, Ny0
= 128 for ε = 1/128, 1/256 and

δy0 = 1/25, Ny0
= 32 for ε = 1/64.

We remark that in this example the mesh sizes of p and q have been taken

very small and Np large enough to make sure that the error of FGA mostly comes

from asymptotic expansion, but not from initial value decomposition, numerical

integration of ODEs and so on. Such a choice of fine mesh is not necessary for the

accuracy of FGA, as one can see in Example 4.3.

Example 4.2. The wave speed is c(x) = x2. The initial conditions are

u0 = exp

(

− (x− 0.55)2

2ε

)

exp
( ıx

ε

)

,

∂tu0 = − ı

ε
exp

(

− (x− 0.55)2

2ε

)

exp
( ıx

ε

)

.
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Table 1. Example 4.1, the ℓ∞ and ℓ2 errors for FGA and GBM.

ε 1/26 1/27 1/28

‖u− uFGA‖ℓ∞ 1.12 × 10−1 6.18 × 10−2 2.51 × 10−2

‖u− uFGA‖ℓ2 6.05 × 10−2 2.96 × 10−2 1.19 × 10−2

‖u− uGBM‖ℓ∞ 7.15 × 10−1 5.08 × 10−1 3.36 × 10−1

‖u− uGBM‖ℓ2 3.26 × 10−1 2.28 × 10−1 1.47 × 10−1

We use this example to illustrate the performances of FGA and GBM when the

beams spread in GBM. The final time is T = 1.0 and ε = 1/256. Remark that

the initial condition is chosen as a single beam on purpose so that one can apply

GBM without introducing any initial errors. The true solution is provided by the

finite difference method using δx = 1/211 and δt = 1/217 for domain [0, 4]. We take

δq = δp = δy = 1/27, Nq = 128, Np = 45 in FGA to make sure that the error in

the initial value decomposition of FGA is very small. The time step is δt = 1/210

for solving the ODEs and the mesh size is chosen as δx = 1/211 to construct the

final solution in both FGA and GBM.

Figure 3 compares the amplitudes of the wave field computed by FGA and GBM,

and the true solution. One can see that the beam has spread severely in GBM. The

results confirm that FGA has a good performance even when the beam spreads,

while GBM does not. Moreover, it does not help improving the accuracy if one

uses more Gaussian beams to approximate the initial condition in GBM as shown

in Figure 4, where Ny0
= 128 beams are used initially and δy0 = 1/27. Remark

that GBM can still give good approximation around beam center where Taylor

expansion does not introduce large errors. This can be seen around x = 1.2 in

Figure 3.

4.2. Two dimension.

Example 4.3. The wave speed is c(x1, x2) = 1. The initial conditions are

u0 = exp
(

−100(x2
1 + x2

2)
)

exp
( ı

ε
(−x1 + cos(2x2))

)

,

∂tu0 = − ı

ε

√

1 + 4 sin2(2x2) exp
(

−100(x2
1 + x2

2)
)

exp
( ı

ε
(−x1 + cos(2x2))

)

.

This example presents the cusp caustics shown in Figure 5. The final time

is T = 1.0. The true solution is given by the spectral method using the mesh

δx1 = δx2 = 1/512 for domain [−1.5, 0.5] × [−1, 1]. We take δq1 = δq2 = δp1 =

δp2 = δy1 = δy2 = 1/32, Nq = 32, Np = 8 in FGA, and use δx1 = δx2 = 1/128 to

reconstruct the solution. Figure 6 compares the wave amplitude of the true solution

and the one by FGA for ε = 1/128 and 1/256. The ℓ∞ and ℓ2 errors of the wave
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(c) ε = 1
256

Figure 2. Example 4.1, the comparison of the true solution (solid

line) and the solution by FGA (dashed line). Left: the real part of

wave field; right: the errors between them.

amplitude are 1.98 × 10−1 and 4.42 × 10−2 for ε = 1/128, and 1.07 × 10−1 and

2.20 × 10−2 for ε = 1/256. This shows a linear convergence in ε of the method.
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Figure 3. Example 4.2, the comparison of the true solution (solid

line), the solution by FGA (dashed line) and the solution by GBM

(dots) for ε = 1
256 . Left: the amplitude of wave field; right: the

error between them (dashed line for FGA, dots for GBM).
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Figure 4. Example 4.2, the comparison of the true solution (solid

line) and the solution by GBM using multiple Gaussian initial rep-

resentation (dots) for ε = 1
256 . Left: the amplitude of wave field;

right: the error between them.
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Figure 5. Example 4.3, a set of the characteristic lines develops

the cusp caustic.
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Figure 6. Example 4.3, the comparison of the true solution and

the solution by FGA. Left: wave amplitude of ε = 1
128 ; right: wave

amplitude of ε = 1
256 .

5. Discussion and Conclusion

We first briefly compare the efficiency of frozen Gaussian approximation (FGA)

with the Gaussian beam method (GBM). GBM uses only one Gaussian function for

each grid point in physical space, while FGA requires more Gaussians per grid point
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with different initial momentum to capture the behavior of focusing or spreading

of the solution. However, the stationary phase approximation suggests that the

number of Gaussians is only increased by a small constant multiple of the number

of those used in GBM. In addition, in GBM one has to solve the Riccati equation,

which is a coupled nonlinear ODE system in high dimension, to get the dynamics

of the Hessian matrix for each Gaussian, while in FGA the Hessian matrix is de-

termined initially and has no dynamics. Therefore, the overall efficiency of FGA is

comparable to GBM.

Admittedly, higher order GBM gives better asymptotic accuracy, and only re-

quires solving a constant number of additional ODEs as in FGA. The numerical

cost of higher order GBM is comparable to FGA. However, higher order GBM has

its drawbacks: The imaginary part of higher order (larger than two) tensor func-

tion dose not preserve positive definiteness in time evolution, which may destroy

the decay property of the ansatz of higher order GBM . This is even more severe

when beams spread. Moreover, the ODEs in higher order GBM are in the form of

coupled nonlinear system in high dimension. It raises numerical difficulty caused by

stability issues. We also note that, the numerical integration of ODEs in FGA can

be easily parallelized since the Hamiltonian flow (2.4) is independent for different

initial (q,p), while it is not so trivial for higher order tensors in GBM.

From the accuracy point of view, our numerical examples show that first or-

der FGA method has asymptotic accuracy O(ε). The existing rigorous analysis

([1, 2, 16]) proves that the k-th order GBM has an accuracy of O(εk/2). Hence,

at the first order, FGA has better asymptotic accuracy than GBM. We note that,

however, there has been numerical evidence presenting O(ε) asymptotic accuracy

order for first order GBM, for example in [9,11,16,18]. This phenomenon is usually

attributed to error cancellation between different beams. To the best of our knowl-

edge, the mechanism of error cancellation in GBM has not been systematically

understood yet.

With the the gain of halfth order in asymptotic accuracy due to cancellation,

the first order GBM has the same accuracy order as FGA (of course GBM still

loses accuracy when beams spread). Remark that the gain in asymptotic accuracy

order depends on the choice of norm. For example, the first order GBM has a

halfth order convergence in ℓ∞ norm, first order convergence in ℓ2 norm and 3/2-th

order convergence in ℓ1 norm in Example 1 of [9]. Moreover, the error cancellation

seems not to be easily observed in numerics unless ε is very small. For instance, the

convergence order of GBM in Example 4.1 is only a bit better than 1/2 for ε up to

1/256. While in FGA, we numerically observe the first order asymptotic accuracy

in both ℓ2 and ℓ∞ norms.

Actually the accuracy of FGA can also be understood from a viewpoint of error

cancellation. Note that the equalities (3.9), (3.10) and (3.11) in Lemma 3.2 play the
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role of determining the accuracy of FGA. In (3.9), the term x−Q is of order O(
√
ε)

due to the Gaussian factor, but after integration with respect to q and p, which is

similar to the beam summation in GBM, it becomes O(ε). Similar improvement

of order also happens in (3.10) and (3.11). Integration by parts along with (3.14)

explains the mechanism of this type of error cancellation.

We conclude the paper as follows. In this work, we propose the frozen Gaussian

approximation (FGA) for computation of high frequency wave propagation, mo-

tivated by the Herman-Kluk propagator in chemistry literature. This method is

based on asymptotic analysis and constructs the solution using Gaussian functions

with fixed widths that live on the phase plane. It not only provides an accurate

asymptotic solution in the presence of caustics, but also resolves the problem in

the Gaussian beam method (GBM) when beams spread. These merits are justified

by numerical examples. Additionally, numerical examples also show that FGA ex-

hibits better asymptotic accuracy than GBM. These advantages make FGA quite

competitive for computing high frequency wave propagation.

For the purpose of presenting the idea simply and clearly, we only describe the

method for the linear scalar wave equation using leading order approximation. The

method can be generalized for solving other hyperbolic equations and systems with

a character of high frequency. The higher order approximation can also be de-

rived. Since the method is of Lagrangian type, the issue of divergence still remains,

which will be resolved in an Eulerian framework. We present these results in the

subsequent paper [17].
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