LDLT & Cholesky

This amounts to an LU decomposition of a positive-definite, symmetric matrix that's 2x as fast to compute!

Thm: A positive-definite symmetric matrix S can be uniquely decomposed as $S = LDL^T$ and $S = LL^T \leftarrow \text{Cholesky}$

where:
- D: diagonal w/ positive diagonal entries
- L: lower-unitriangular
- L^T: lower-triangular with positive diagonal entries.

Proof: [supplement]

NB: Any such L^T has full column rank so $S = LL^T$ is necessarily positive-definite & symmetric (last time).

NB: Let $U = DL^T$.

(scales the rows of L^T by the diagonal entries of D)

Then U is upper-Δ with positive diagonal entries.

\Rightarrow in REF, so $S = LU$ is the LU decomposition!

This tells us how to compute an LDLT decomposition.
Procedure to compute $S=LDL^T$:

Let S be a symmetric matrix.

1. Compute the LU decomposition $S=LU$.
 - If you have to do a row swap then stop: S is not positive-definite.
 - If the diagonal entries of U are not all positive then stop: S is not positive-definite.

2. Let D = the matrix of diagonal entries of U (set the off-diagonal entries $=0$). Then $S = LDL^T$.

NB: An LDL^T decomposition can be computed in $\frac{1}{3}n^3$ flops (as opposed to $\frac{2}{3}n^3$ for LU). This requires a slightly more clever algorithm. See the supplement - it's also faster by hand!

NB: This is still an LU decomposition - lets you solve $Sx=b$ quickly.

NB: $S=QDQ^T$ and $S=LDL^T$ are both "diagonalizations" in the sense of quadratic forms (later).
Find the LDLᵀ decomposition of \(S = \begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -1 \\ -2 & -1 & 14 \end{pmatrix} \)

2-column method:

\[
\begin{align*}
L &= \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix} \\
U &= \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix}
\]

\begin{align*}
R_2 &= 2R_1 \\
R_3 &= R_1
\end{align*}

\begin{align*}
R_3 &= 3R_2 \\
R_3 &= R_2
\end{align*}

So \(S = LDLᵀ \) for

\[
L = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix} \quad \text{and} \quad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}
\]

Check:

\[
DLᵀ = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix} = U
\]
Cholesky from LDLᵀ:
If S is positive-definite then S = LDLᵀ,
where D is diagonal with positive diagonal entries.
If \(D = \begin{pmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{pmatrix} \), set \(\sqrt{D} = \begin{pmatrix} \sqrt{d_1} & 0 & \cdots & 0 \\ 0 & \sqrt{d_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{d_n} \end{pmatrix} \).

Then \(\sqrt{D} \cdot \sqrt{D} = D \) and \(\sqrt{D} \sqrt{D}^T = \sqrt{D} \sqrt{D} \), so
\[
LDL^T = L \sqrt{D} \sqrt{D} L^T = (L \sqrt{D})(L \sqrt{D})^T
\]
So just set
\[
L_1 = L \sqrt{D} \quad \Rightarrow \quad S = L_1 L_1^T
\]

Strang:
"\(S = A^T A \) is how a positive-definite symmetric matrix is put together.
\(S = L_1 L_1^T \) is how you pull it apart."

Eg: \[
\begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -1 \\ -2 & -1 & 14 \end{pmatrix} = L_1 L_1^T \quad \text{for}
\]
\[
L_1 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{5} & 0 \\ 0 & 0 & \sqrt{3} \end{pmatrix} = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 2\sqrt{5} & 1 & 0 \\ -\sqrt{2} & 3 & \sqrt{3} \end{pmatrix}
\]
Quadratic Optimization

This is an important application of the spectral theorem and positive-definiteness. Also, SVD+QO+stats=PCA.

It is the simplest case of quadratic programming, which is a big subfield of optimization. (So is least squares.)

For an example application, see the Wikipedia page for support-vector machine, an important tool in machine learning that reduces to a quadratic optimization problem. (There are tons of other applications.)

Def: An optimization problem means finding extremal values (minimum, maximum) of a function $f(x_1, \ldots, x_n)$ subject to some constraint on (x_1, \ldots, x_n).

In quadratic optimization, we consider quadratic functions.

Def: A quadratic form in n variables is a function $q(x_1, \ldots, x_n) =$ sum of terms of the form $a_{ij} x_i x_j$

Eg: $q(x_1, x_2) = \frac{5}{2} x_1^2 + \frac{5}{2} x_2^2 - x_1 x_2$

Non-eg: $q(x_1, x_2) = x_1^2 + x_2^2 + x_1 + x_2$ is not a quadratic form: x_1, x_2 are linear terms.
NB: Thinking of $x = (x_0, \ldots, x_n)$ as a vector,
$q(x) = q(x_0, \ldots, x_n) = \sum a_{ij} (cx_i)(cx_j) = \sum c^2 a_{ij} x_i x_j = c^2 q(x)$

\[q(x) = c^2 q(x) \]

In quadratic optimization, the constraint on $x = (x_0, \ldots, x_n)$ is usually $\|x\| = 1$, i.e. $x_0^2 + \cdots + x_n^2 = 1$.

Quadratic Optimization Problem:
Given a quadratic form $q(x)$, find the minimum & maximum values of $q(x)$ subject to $\|x\| = 1$.

Eg: $q(x_0, x_2) = 3x_0^2 - 2x_2^2$

Maximum:
$q(x_0, x_2) = 3x_0^2 - 2x_2^2 \leq 3x_0^2 + 3x_2^2 = 3(x_0^2 + x_2^2) = 3\|x\|^2 = 3$

So the maximum value is 3; it is achieved at $(x_0, x_2) = \pm (1, 0) : q(\pm 1, 0) = 3$.
Minimum:
\[q(x,y,z) = 3x^2 - 2z^2 - 2x^2 \]
\[= -2(x^2 + z^2) = -2\|x\|^2 = -2 \]

So the minimum value is \(-2\); it is achieved at \((x,y,z) = \pm (0,1)\): \(q(0,\pm 1) = -2\).

This example is easy because \(q(x,y,z) = 3x^2 - 2z^2\) involves only squares of the coordinates; there is no cross-term \(xz\).

Def: A quadratic form is **diagonal** if it has the form \(q(x,y,z) = \text{sum of terms of the form } \lambda_i x_i^2\).

Terms of the form \(a_{ij} x_i x_j\) (\(i \neq j\)) are **cross-terms**.

Quadratic Optimization of Diagonal Forms:
Let \(q(x) = \sum \lambda_i x_i^2\). Order the \(x_i\) so that \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\). Then

- The maximum value of \(q(x)\) is \(\lambda_1\).
- The minimum value of \(q(x)\) is \(\lambda_n\) (subject to \(\|x\| = 1\)).

NB: the \(\lambda_i\) could be negative.
Strategy: To solve a quadratic optimization problem, we want to diagonalize it to get rid of the cross terms.

To do this, we use symmetric matrices!

Fact: Every quadratic form can be written
\[q(x) = x^T S x \]
for a symmetric matrix S.

Eg: \[S = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} \]

\[x^T S x = (x_1, x_2, x_3) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \]
\[= (x_1, x_2, x_3) \begin{pmatrix} x_1 + 2x_2 + 3x_3 \\ 2x_1 + 4x_2 + 5x_3 \\ 3x_1 + 5x_2 + 6x_3 \end{pmatrix} \]
\[= x_1^2 + 2x_1x_2 + 3x_1x_3 \]
\[+ 2x_2x_1 + 4x_2^2 + 5x_2x_3 \]
\[+ 3x_3x_1 + 5x_3x_2 + 6x_3^2 \]
\[= x_1^2 + 4x_2^2 + 6x_3^2 + 4x_1x_2 + 6x_1x_3 + 10x_2x_3 \]

NB: The (1,2) and (2,1) entries contribute to the \(x_1x_2 \) coefficient.
Given q, how to get S?

The x_i^2 coefficients go on the diagonal, and half of the $x_i x_j$ coefficient goes in the (i,j) and (j,i) entries.

$$q(x_1, x_2, x_3) = a_{11}x_1^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{22}x_2^2 + a_{23}x_2x_3 + a_{33}x_3^2$$

$$\Rightarrow S = \begin{pmatrix} a_{11} & a_{12}/2 & a_{13}/2 \\ a_{12}/2 & a_{22} & a_{23}/2 \\ a_{13}/2 & a_{23}/2 & a_{33} \end{pmatrix}$$

NB: q is diagonal \iff S is diagonal: the a_{ij} are the coefficients of the cross-terms.

$$x^T \begin{pmatrix} \lambda_1 & \cdots & 0 \\ 0 & \cdots & \lambda_n \end{pmatrix} x = \lambda_1 x_1^2 + \lambda_2 x_2^2 + \cdots + \lambda_n x_n^2$$

How does this help quadratic optimization?

Orthogonally diagonalize!

$$q(x) = x^T S x$$

Find a diagonal matrix D and orthogonal matrix Q such that $S = QDQ^T$

$$\Rightarrow q(x) = x^T QDQ^T x$$
Let \(x = Qy \); this is a change of variables

\[
q(x) = q(Qy) = (Qy)^T Q D Q^T (Qy) = y^T D y
\]

This is now diagonal!

NB: \(Q \) is orthogonal \(\Rightarrow \) \(\|x\| = \|Qy\| = \|y\| \)

\[
\|x\| = 1 \iff \|y\| = 1
\]

Eg: Find the minimum \& maximum of

\[
q(x_1, x_2) = \frac{1}{2} x_1^2 + \frac{1}{2} x_2^2 - 5 x_1 x_2
\]

subject to \(\|x\| = 1 \).

\[
q(x) = x^T \begin{pmatrix} \frac{1}{2} & -\frac{5}{2} \\ -\frac{5}{2} & \frac{1}{2} \end{pmatrix} x \quad \Rightarrow \quad S = \frac{1}{2} \begin{pmatrix} 1 & -5 \\ -5 & 1 \end{pmatrix}
\]

Orthogonally diagonalize: \(S = QDQ^T \) for

\[
Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}
\]

Set \(x = Qy \):

\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} -y_1 + y_2 \\ y_1 + y_2 \end{pmatrix}
\]

\[
\begin{cases}
 x_1 = \frac{1}{\sqrt{2}} (-y_1 + y_2) \\
 x_2 = \frac{1}{\sqrt{2}} (y_1 + y_2)
\end{cases}
\]

is a linear change of variables

Then \(q(x) = y^T \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} y = 3y_1^2 - 2y_2^2 \).
The maximum value of q subject to $\|x\| = \|y\| = 1$ is 3, achieved at

$$y = (\pm 1, 0) \implies x = Qy = \pm \sqrt{2}(1)$$

The minimum value of q subject to $\|x\| = \|y\| = 1$ is -2, achieved at

$$y = (0, \pm 1) \implies x = Qy = \pm \sqrt{2}(i)$$

NB: The minimum value is the smallest diagonal entry of D \(\Rightarrow\) smallest eigenvalue.

$q'(0) \pm i$ is \(\pm\) the last column of Q \(\Rightarrow\) is a unit eigenvector for that eigenvalue. Likewise for the largest eigenvalue.
Quadratic Optimization:

To find the minimum/maximum of a quadratic form \(q(x) \) subject to \(\|x\|=1 \):

1. Write \(q(x)=x^TSx \) for a symmetric matrix \(S \).
2. Orthogonally diagonalize \(S=QDQ^T \) for
 \[
 Q = \begin{pmatrix} u_1 & \cdots & u_n \end{pmatrix} \quad D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix}
 \]

Order the eigenvalues so \(\lambda_1 \geq \cdots \geq \lambda_n \).

3. The maximum value of \(q(x) \) is the largest eigenvalue \(\lambda_1 \).
 It is achieved for \(x = \) any unit \(\lambda_1 \)-eigenvector.

The minimum value of \(q(x) \) is the smallest eigenvalue \(\lambda_n \).
 It is achieved for \(x = \) any unit \(\lambda_n \)-eigenvector.

NB: If \(\text{G.M.}(\lambda_i)=1 \) then the only unit \(\lambda_i \)-eigenvectors are \(\pm u_i \). (Only 2 unit vectors are on any line)

NB: \(x=Qy \) diagonalizes \(q \):
\[
q(x) = \lambda_1 y_1^2 + \cdots + \lambda_n y_n^2
\]