Math 218D-1: Homework #9

due Wednesday, November 1, at 11:59pm

1. a) Compute the determinants of the matrices in HW8#1 in two more ways: by expanding cofactors along a row, and by expanding cofactors along a column. You should get the same answer using all three methods!

b) Compute the determinants of the matrices in HW8#1(b) and (d) again using Sarrus’ scheme.

c) For the matrix of HW8#1(c), sum the products of the forward diagonals and subtract the products of the backward diagonals, as in Sarrus’ scheme. Did you get the determinant?

2. Compute

$$\det \begin{pmatrix} -3 & 3 & 2 \\ 3 & 0 & 0 \\ -9 & 18 & 7 \end{pmatrix} - \lambda I_3$$

where \(\lambda\) is an unknown real number. Your answer will be a function of \(\lambda\).

3. Consider the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 0 & 1 & 2 \end{pmatrix}.$$

a) Compute the cofactor matrix \(C\) of \(A\).

b) Compute \(AC^T\). What is the relationship between \(C^T\) and \(A^{-1}\)?

4. Consider the \(n \times n\) matrix \(F_n\) with 1’s on the diagonal, 1’s in the entries immediately below the diagonal, and \(-1\)’s in the entries immediately above the diagonal:

$$F_2 = \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \quad F_3 = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix} \quad F_4 = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 1 \end{pmatrix} \quad \cdots.$$

a) Show that det\((F_2) = 2\) and det\((F_3) = 3\).

b) Expand in cofactors to show that det\((F_n) = det(F_{n-1}) + det(F_{n-2})\).

c) Compute det\((F_4), det(F_5), det(F_6), det(F_7)\) using b).

This shows that det\((F_n)\) is the \(n\)th **Fibonacci number**. (The sequence usually starts with 1, 1, 2, 3, \ldots, so our det\((F_n)\) is the usual \(n + 1\)st Fibonacci number.)
5. Let A be an $n \times n$ invertible matrix with integer (whole number) entries.
 a) Explain why $\text{det}(A)$ is an integer.
 b) If $\text{det}(A) = \pm 1$, show that A^{-1} has integer entries.
 c) If A^{-1} has integer entries, show that $\text{det}(A) = \pm 1$.

6. Let V be a subspace of \mathbb{R}^n. The matrix for reflection over V is
 \[R_V = I_n - 2P_V, \]
 where $P_V = I_n - P_V$ is the projection matrix onto V^\perp.
 a) Suppose that V is the line in the picture. Draw the vectors $R_Vx_1, R_Vx_2, R_Vx_3,$
 and R_Vx_4 as points in the plane.

 ![Diagram of vectors](image)

 b) Show that any reflection matrix R_V is orthogonal.
 \[\text{[Hint: Recall that } P^2_V = P_{V^\perp} = P_{V^\perp}^T. \]
 c) Let V be the plane $x + y + z = 0$. Compute R_V and $\text{det}(R_V)$.
 d) Let V be any plane in \mathbb{R}^3. Prove that $\text{det}(R_V) = -1$, as follows: choose an
 orthonormal basis $\{u_1, u_2\}$ for V, and let $u_3 = u_1 \times u_2$. Show that the matrix A
 with columns u_1, u_2, u_3 has determinant 1, and that R_VA has determinant -1.
 Summary: a reflection over a plane in \mathbb{R}^3 has determinant -1.
 e) Now compute $\text{det}(R_L)$, where L is the x-axis in \mathbb{R}^3.
7. Consider the parallelepiped P in \mathbb{R}^3 spanned by

\[v_1 = \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix}. \]

a) Compute the volume of P using a triple product $(v_1 \times v_2) \cdot v_3$.

b) Compute the area of each face of P using cross products.

c) If the “base” of P is the parallelogram spanned by v_1 and v_2 (blue in the picture), show that the height of P is $\|v_3\| \sin \theta$, where θ is the angle that v_3 makes with the base. (Draw a simpler picture.)

d) The volume of P is the area of the base of P times its height. How do you reconcile c) with a)? (Remember that $\|u \cdot v\| = \|u\| \|v\| \cos(\text{the angle from } u \text{ to } v)$.)

8. Use a cross product to find an implicit equation for the plane

\[V = \text{Span}\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \right\}. \]

Compare HW6#7(a).

9. a) Let $v = (a, b)$ and $w = (c, d)$ be vectors in the plane, and let $A = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$. By taking the cross product of $(a, b, 0)$ and $(c, d, 0)$, explain how the right-hand rule determines the sign of $\det(A)$.

b) Using the identity

\[
\left[\begin{pmatrix} a \\ b \\ c \end{pmatrix} \times \begin{pmatrix} d \\ e \\ f \end{pmatrix} \right] \cdot \begin{pmatrix} g \\ h \\ i \end{pmatrix} = \det \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix},
\]

explain how the right-hand rule determines the sign of a 3×3 determinant.

10. Decide if each statement is true or false, and explain why.

a) The determinant of the cofactor matrix of A equals the determinant of A.

b) $u \times v = v \times u$.

c) If $u \times v = 0$ then $u \perp v$.
11. For each matrix \(A\) and each vector \(v\), decide if \(v\) is an eigenvector of \(A\), and if so, find the eigenvalue \(\lambda\).

\[a) \begin{pmatrix} -20 & 42 & 58 \\ 1 & -1 & -3 \\ -1 & 18 & 26 \end{pmatrix}, \quad \left(\begin{array}{c} 1 \\ 5 \\ -2 \end{array}\right), \quad \left(\begin{array}{c} 1 \end{array}\right)\]

\[b) \begin{pmatrix} 2 & 3 & 0 \\ -5 & 4 & 2 \\ 3 & 3 & 3 \end{pmatrix}, \quad \left(\begin{array}{c} 1 \\ 1 \end{array}\right), \quad \left(\begin{array}{c} 1 \end{array}\right)\]

\[c) \begin{pmatrix} -7 & 32 & -76 \\ 7 & -22 & 59 \\ 3 & -11 & 28 \end{pmatrix}, \quad \left(\begin{array}{c} 3 \\ -2 \\ -1 \end{array}\right), \quad \left(\begin{array}{c} 1 \end{array}\right)\]

\[d) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}, \quad \left(\begin{array}{c} -3 \\ 2 \\ -3 \end{array}\right), \quad \left(\begin{array}{c} 0 \end{array}\right)\]

\[e) \begin{pmatrix} -3 & 2 & -3 \\ 3 & -3 & -2 \\ -4 & 2 & -3 \end{pmatrix}, \quad \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)\]

12. For each matrix \(A\) and each number \(\lambda\), decide if \(\lambda\) is an eigenvalue of \(A\); if so, find a basis for the \(\lambda\)-eigenspace of \(A\).

\[a) \begin{pmatrix} -5 & -14 \\ 3 & 8 \end{pmatrix}, \quad \lambda = 1 \quad b) \begin{pmatrix} -5 & -14 \\ 3 & 8 \end{pmatrix}, \quad \lambda = -1\]

\[c) \begin{pmatrix} 2 & 3 & -15 \\ 5 & -7 & 31 \\ 2 & -3 & 13 \end{pmatrix}, \quad \lambda = 3 \quad d) \begin{pmatrix} 2 & 3 & -15 \\ 5 & -7 & 31 \\ 2 & -3 & 13 \end{pmatrix}, \quad \lambda = 2\]

\[e) \begin{pmatrix} 3 & 1 & -2 \\ -2 & 0 & 4 \\ -1 & -1 & 4 \end{pmatrix}, \quad \lambda = 2 \quad f) \begin{pmatrix} 1 & 1 & -2 \\ -2 & -2 & 4 \\ -1 & -1 & 2 \end{pmatrix}, \quad \lambda = 0\]

\[g) \begin{pmatrix} 7 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{pmatrix}, \quad \lambda = 7 \quad h) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda = 0\]

13. Suppose that \(A\) is an \(n \times n\) matrix such that \(Av = 2v\) for some \(v \neq 0\). Let \(C\) be any invertible matrix. Consider the matrices

\[a) A^{-1} \quad b) A + 2I_n \quad c) A^3 \quad d) CAC^{-1}\]

Show that \(v\) is an eigenvector of \(a)–c\) and that \(Cv\) is as eigenvector of \(d\), and find the eigenvalues.

14. Here is a handy trick for computing eigenvectors of a \(2 \times 2\) matrix.

Let \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\) be a \(2 \times 2\) matrix with eigenvalue \(\lambda\). Explain why \(\begin{pmatrix} -b \\ a - \lambda \end{pmatrix}\) and \(\begin{pmatrix} d - \lambda \\ -c \end{pmatrix}\) are \(\lambda\)-eigenvectors of \(A\) if they are nonzero.

For which matrices \(A\) does this trick fail?
15.
 a) Show that A and A^T have the same eigenvalues.
 b) Give an example of a 2×2 matrix A such that A and A^T do not share any eigenvectors.
 c) A **stochastic matrix** is a matrix with nonnegative entries such that the entries in each column sum to 1. Explain why 1 is an eigenvalue of a stochastic matrix.
 [**Hint:** show that $(1, 1, \ldots, 1)$ is an eigenvector of A^T.]

16.
 a) Find all eigenvalues of the matrix
 $$
 \begin{pmatrix}
 1 & -1 & 2 & 3 & 4 \\
 0 & 3 & -1 & -2 & -5 \\
 0 & 0 & 1 & 2 & 4 \\
 0 & 0 & 0 & 2 & 3 \\
 0 & 0 & 0 & 0 & -1
 \end{pmatrix}.
 $$
 b) Explain how to find the eigenvalues of any triangular matrix.

17. Recall that an **orthogonal matrix** is a square matrix with orthonormal columns. Prove that any (real) eigenvalue of an orthogonal matrix Q is ± 1.

18. Give an example of each of the following, or explain why no such example exists.
 a) An invertible matrix with characteristic polynomial $p(\lambda) = -\lambda^3 + 2\lambda^2 + 3\lambda$.
 b) A 2×2 orthogonal matrix with no real eigenvalues.

19. Suppose that A is a square matrix such that A^k is the zero matrix for some $k > 0$. Show that 0 is the only eigenvalue of A.

20. Decide if each statement is true or false, and explain why.
 a) If v, w are eigenvectors of a matrix A, then so is $v + w$.
 b) An eigenvalue of $A + B$ is the sum of an eigenvalue of A and an eigenvalue of B.
 c) An eigenvalue of AB is the product of an eigenvalue of A and an eigenvalue of B.
 d) If $Ax = \lambda x$ for some vector x, then λ is an eigenvalue of A.
 e) A matrix with eigenvalue 0 is not invertible.
 f) The eigenvalues of A are equal to the eigenvalues of a row echelon form of A.