Please read all instructions carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the printed pages (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a simple calculator for doing arithmetic, but you should not need one. You may bring a 3×5-inch note card covered with anything you want. All other materials and aids are strictly prohibited.
- For full credit you must show your work so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!
[This page intentionally left blank]
Problem 1. [18 points]

Consider the matrix

$$A = \begin{pmatrix} 1 & -1 & 0 & 2 & 1 \\ -2 & 1 & 1 & 0 & 1 \end{pmatrix}.$$

a) The row space of A is a (circle one) \(\text{line} \) \(\text{plane} \) \(\text{space} \) in (fill in the blank) \(\mathbb{R}^n\).

b) Compute the orthogonal projection of \(b = (3, 0, 0, 0, -1)\) onto \(\text{Row}(A)\).

\[
b_{\text{Row}(A)} = \begin{pmatrix} \hfill \\ \hfill \\ \end{pmatrix}.
\]

c) Compute the orthogonal projection of \(b = (3, 0, 0, 0, -1)\) onto \(\text{Nul}(A)\).

\[
b_{\text{Nul}(A)} = \begin{pmatrix} \hfill \\ \hfill \\ \end{pmatrix}.
\]
[Scratch work for Problem 1]
Now consider the matrix
\[B = \begin{pmatrix} 1 & -1 & 0 & 2 & 1 \\ -2 & 2 & 0 & -4 & -2 \end{pmatrix}. \]

d) The row space of \(B \) is a (circle one) \(\text{line} \) \(\text{plane} \) \(\text{space} \) in (fill in the blank) \(\mathbb{R}^\text{ } \).

e) Compute the orthogonal projection of \(b = (2, 0, 0, 3, -1) \) onto \(\text{Row}(B) \).

\[b_{\text{Row}(B)} = \begin{pmatrix} _ \\ _ \end{pmatrix}. \]

f) Compute the projection matrix \(P_V \) for \(V = \text{Nul}(B) \).

\[P_V = \begin{pmatrix} _ \\ _ \end{pmatrix}. \]

g) Find a basis for \(\text{Nul}(P_V) \).

\[\{ _ _ \} \]
[Scratch work for Problem 1]
Problem 2. [17 points]

Consider the matrix

\[
A = \begin{pmatrix}
1 & 4 & 1 \\
1 & 4 & -1 \\
1 & 2 & 5 \\
1 & 2 & 3
\end{pmatrix}
\]

Applying the Gram–Schmidt procedure to its columns gives:

\[
\begin{pmatrix}
1 \\
1 \\
-1 \\
-1
\end{pmatrix} = \begin{pmatrix} 1 \\ 4 \\ 2 \\ -1 \end{pmatrix} - 3 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}
\]

\[
\begin{pmatrix}
1 \\
-1 \\
1 \\
-1
\end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 5 \\ 3 \end{pmatrix} - 2 \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}
\]

a) Compute the QR decomposition of \(A \).

b) Find the least-squares solution of \(Ax = (2, 0, -4, 2) \).
(Problem 2, continued)

c) Compute the orthogonal projection of \(b = (2, 0, -4, 2) \) onto \(V = \text{Col}(A) \).

\[
b_v = \begin{pmatrix} \hfill \\ \hfill \\ \hfill \end{pmatrix}
\]

d) Find vector \(v \) in \(\text{Nul}(A^T) \).

\[
v = \begin{pmatrix} \hfill \\ \hfill \\ \hfill \end{pmatrix}
\]

e) Compute the projection matrix \(P_v \) onto \(V = \text{Col}(A) \).

\[
P_v = \begin{pmatrix} \hfill \\ \hfill \\ \hfill \end{pmatrix}
\]

f) Find an eigenbasis for \(P_v \).

\[
\left\{ \begin{pmatrix} \hfill \\ \hfill \\ \hfill \end{pmatrix}, \begin{pmatrix} \hfill \\ \hfill \\ \hfill \end{pmatrix} \right\}
\]
[Scratch work for Problem 2]
Problem 3. [15 points]

The matrix

\[
A = \begin{pmatrix}
61/2 & 12 & -7/2 \\
-51 & -20 & 6 \\
75 & 30 & -8
\end{pmatrix}
\]

has eigenvectors

\[
w_1 = \begin{pmatrix} 1 \\ -2 \\ 2 \end{pmatrix} \quad w_2 = \begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix} \quad w_3 = \begin{pmatrix} -2 \\ 3 \\ -6 \end{pmatrix}.
\]

a) Find the eigenvalue associated to each of these eigenvectors.

\[
\lambda_1 = \quad \lambda_2 = \quad \lambda_3 =
\]

b) Compute the characteristic polynomial of \(A\). (You need not expand a product of polynomials.)

\[
p(\lambda) =
\]

c) Find an invertible matrix \(C\) and a diagonal matrix \(D\) such that \(A = CDC^{-1}\).

\[
C = \quad D =
\]

d) If \(v = (-1, 3, 2)\), compute \(A^{100}v\). (You can write your answer in terms of \(w_1, w_2, w_3\).)

\[
A^{100}v =
\]

e) For which vectors \(u\) does \(\|A^k u\|\ not approach \(\infty\) as \(k \to \infty\)?
[Scratch work for Problem 3]
Problem 4. [10 points]

A certain 2×2 matrix A has eigenvalues 0 and -1, with corresponding eigenspaces drawn below.

a) Draw and label Ax and Ay.

b) Draw and label $\text{Nul}(A)$ and $\text{Row}(A)$. (The eigenspaces are reproduced in gray.)
[Scratch work for Problem 4]
Problem 5.

Short-answer questions: no explanation is needed unless indicated otherwise.

a) Compute the area of the parallelogram. (Grid marks are one unit apart.)

\[
\text{area} = \square
\]

b) For which value(s) of \(k \), if any, is the following matrix not invertible?

\[
A = \begin{pmatrix}
1 & 0 & 3 & 2 \\
0 & 1 & k & 4 \\
2 & 1 & -1 & 2 \\
0 & 3 & 2 & 0
\end{pmatrix}
\]

\[
k = \square
\]

c) Suppose that \(A \) is an \(n \times n \) matrix with characteristic polynomial

\[p(\lambda) = \lambda(\lambda - 1)(\lambda - 2)^2.\]

Which of the following can you determine from this information?

- The number \(n \).
- The trace of \(A \).
- The determinant of \(A \).
- The eigenvalues of \(A \).
- Whether \(A \) is invertible.
- Whether \(A \) is diagonalizable.

d) Suppose that \(\nu \) is a 3-eigenvector of \(A \). Briefly explain why \(\nu \in \text{Col}(A) \).
Problem 6. [20 points]

In each part, either provide an example, or explain why no example exists. (No explanation is required if an example does exist.)

a) A 2×2 non-diagonalizable matrix with eigenvalues 1 and -1.

b) A 2×2 matrix whose 1-eigenspace is the line $x + 2y = 0$ and whose 2-eigenspace is the line $x + 3y = 0$.

c) A 3×2 matrix A and a vector b such that $Ax = b$ does not have a least-squares solution.

d) A 2×2 matrix that is orthogonal but has no zero entries.
[Scratch work for Problem 6]