
THE LDLT AND CHOLESKY DECOMPOSITIONS

The LDLT decomposition is a variant of the LU decomposition that is valid for positive-
definite symmetric matrices; the Cholesky decomposition is a tweak of the LDLT decom-
position.

Theorem. Let S be a positive-definite symmetric matrix. Then S has unique decompositions

S = LDLT and S = L1 LT
1

where:
• L is lower-unitriangular,
• D is diagonal with positive diagonal entries, and
• L1 is lower-triangular with positive diagonal entries.

See later in this note for an efficient way to compute an LDLT decomposition (by hand
or by computer) and an example.

Remark. Any matrix admitting either decomposition is symmetric positive-definite by a
on Homework 12.

Remark. Since LT
1 has full column rank, taking A= LT

1 shows that any positive-definite
symmetric matrix S has the form AT A.

Remark. Suppose that S has an LDLT decomposition with

D =





d1 · · · 0
...

. . .
...

0 · · · dn



 .

Then we define

p
D =





p

d1 · · · 0
...

. . .
...

0 · · ·
p

dn



 ,

so that (
p

D)2 = D, and we set L1 = L
p

D. Then

L1 LT
1 = L(

p
D)(
p

D)T LT = LDLT = S,

so L1 LT
1 is the Cholesky decomposition of S.

Conversely, given a Cholesky decomposition S = L1 LT
1 , we can write L1 = LD′, where

D′ is the diagonal matrix with the same diagonal entries as L1; then L = L1D′−1 is the
lower-unitriangular matrix obtained from L1 by dividing each column by its diagonal
entry. Setting D = D′2, we have

S = (LD′)(LD′)T = LD′2 LT = LDLT ,

which is the LDLT decomposition of S.
1
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Since the LDLT decomposition and the Cholesky decompositions are interchangeable,
we will focus on the former.

Remark. The matrix U = DLT is upper-triangular with positive diagonal entries. In
particular, it is in row echelon form, so S = LU is the LU decomposition of S. This gives
another way to interpret the Theorem: it says that every positive-definite symmetric
matrix S has an LU decomposition (no row swaps are needed); moreover, U has positive
diagonal entries, and if D is the diagonal matrix with the same diagonal entries as U ,
then LT = D−1U (dividing each row of U by its pivot gives LT ).

This shows that one can easily compute an LDLT decomposition from an LU decom-
position: use the same L, and let D be the diagonal matrix with the same diagonal entries
as U . However, we will see that one can compute LDLT twice as fast as LU , by hand or
by computer: see the end of this note.

Proof that the LDLT decomposition exists and is unique. The idea is to do row and column
operations on S to preserve symmetry in elimination. Suppose that E is an elementary
matrix for a row replacement, say

R2 −= 2R1 : E =

 

1 0 0
−2 1 0

0 0 1

!

.

Then EA performs the row operation R2 −= 2R1 on a 3×3 matrix A. On the other hand,
AET performs the corresponding column operation C2 −= 2C1: indeed, taking transposes,
we have (AET )T = EAT , which performs R2 −= 2R1 on AT .

Starting with a positive-definite symmetric matrix S, first we note that the (1,1)-entry
of S is positive: this was a problem on Homework 12. Hence we can do row replacements
(and no row swaps) to eliminate the last n− 1 entries in the first column. Multiplying
the corresponding elementary matrices together gives us a lower-unitriangular matrix L1
such that the last n−1 entries of the first column of L1S are zero. Multiplying L1S by LT

1
on the right performs the same sequence of column operations; since S was symmetric,
this has the effect of clearing the last n− 1 entries of the first row of S. In diagrams:

S =

 

a b c
b ∗ ∗
c ∗ ∗

!

L1 =

 

1 0 0
−b/a 1 0
−c/a 0 1

!

L1S =

 

a b c
0 ∗ ∗
0 ∗ ∗

!

L1SLT
1 =

 

a 0 0
0 ∗ ∗
0 ∗ ∗

!

Since S is symmetric, the matrix S1 = L1SLT
1 is symmetric, and since S is positive-definite,

the matrix S1 is also positive-definite by a problem on Homework 12. In particular, the
(2, 2)-entry of S1 is nonzero, so we can eliminate the second column and the second row in
the same way. We end up with another positive-definite symmetric matrix S2 = L2S1 LT

2 =
(L2 L1)S(L2 L1)T where the only nonzero entries in the first two rows/columns are the
diagonal ones. Continuing in this way, we eventually get a diagonal matrix D = Sn−1 =
(Ln−1 · · · L1)S(Ln−1 · · · L1)T with positive diagonal entries. Setting L = (Ln−1 · · · L1)−1 gives
S = LDLT .
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As for uniqueness,1 suppose that S = LDLT = L′D′L′T . Multiplying on the left by L′−1

gives L′−1 LDLT = D′L′T , and multiplying on the right by (DLT )−1 gives

L′−1 L = (D′L′T )(DLT )−1.

The left side is lower-unitriangular and the right side is upper-triangular. The only matrix
that is both lower-unitriangular and upper-triangular is the identity matrix. It follows
that L′−1 L = In, so L′ = L. Then we have (D′L′T )(DLT )−1 = In, so D′LT = DLT (using
L′ = L), and hence D′ = D (because L is invertible). �

Remark (For experts). In abstract linear algebra, the expression 〈x , y〉= x T S y is called
an inner product. This is a generalization of the usual dot product: 〈x , y〉 = x · y when
S = In. When S is positive-definite, one can run the Gram–Schmidt algorithm to turn the
usual basis {e1, . . . , en} of Rn into a basis {v1, . . . , vn} which is orthogonal with respect to
〈 · , · 〉. The corresponding change-of-basis matrix is a lower-unitriangular matrix L′, and
the matrix for 〈 · , · 〉 with respect to the orthogonal basis is a diagonal matrix D. This
means L′DL′T = S, so taking L = L′−1, we have S = LDLT .

Upshot: the LDLT decomposition is exactly Gram–Schmidt as applied to the inner
product 〈x , y〉= x T S y .

Computational Complexity. The algorithm in the above proof appears to be the same
as LU: the matrix L = (Ln−1 · · · L1)−1 is exactly what one would compute in an LU de-
composition of an arbitrary matrix. However, one can save compute cycles by taking
advantage of the symmetry of S.

In an ordinary LU decomposition, when clearing the first column, each row replace-
ment involves n− 1 multiplications (scale the first row) and n− 1 additions (add to the
ith row), for 2(n− 1) floating point operations (flops). Hence it takes 2(n− 1)2 flops to
clear the first column. Clearing the second column requires 2(n− 2)2 flops, and so on,
for a total of

2
�

(n− 1)2 + (n− 2)2 + · · ·+ 1
�

= 2
n(n− 1)(2n− 1)

6
≈

2
3

n3

flops. However, when clearing the first row and column of a symmetric positive-definite
matrix S, one only needs to compute the entries of L1SLT

1 on or above the diagonal; the
others are determined by symmetry. The first row replacement (the one that clears the
(2, 1)-entry) still needs n − 1 multiplications and n − 1 additions, but the second only
needs n− 2 multiplications and n− 2 additions (because we don’t need to compute the
(3, 2)-entry), and so on, for a total of

2
�

(n− 1) + (n− 2) + · · ·+ 1
�

= 2
n(n− 1)

2
= n2 − n

1What follows is essentially the same proof that the LU decomposition is unique for an invertible matrix.
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flops to clear the first column. Clearing the second column requires (n − 1)2 − (n − 1)
flops, and so on, for a total of

�

n2 − n
�

+
�

(n− 1)2 − (n− 1)
�

+ · · ·+
�

12 − 1
�

=
�

n2 + (n− 1)2 + · · ·+ 1
�

−
�

n+ (n− 1) + · · ·+ 1
�

=
n(n+ 1)(2n+ 1)

6
−

n(n+ 1)
2

≈
1
3

n3

flops: half what was required for a full LU decomposition!
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An Algorithm. The above discussion tells us how to modify the LU algorithm to compute
the LDLT decomposition. We use the two-column method as for an LU decomposition,
but instead of keeping track of L1S, L2 L1S, . . . in the right column, we keep track of the
symmetric matrices S1 = L1SLT

1 , S2 = L2 L1S(L2 L1)T , . . ., for which we only have to com-
pute the entries on or above the diagonal. Instead of ending up with the matrix U in the
right column, we end up with D.

Very explicitly: to compute S1 = L1SLT
1 from S, first do row operations to eliminate

the entries below the first pivot, then do column operations to eliminate the entries to
the right of the first pivot; since the entries below the first pivot are zero after doing the
row operations, this only changes entries in the first row. We end up with a symmetric
matrix, so we only need to compute the entries on and above the diagonal. Now clear
the second row/column, and continue recursively. Computing L is done the same way
as in the LU decomposition, by recording the column divided by the pivot at each step.

Example. Let us compute the LDLT decomposition of the positive-definite symmetric
matrix

S =







2 4 −2 2
4 9 −1 6
−2 −1 14 13

2 6 13 35






.

The entries in blue came for free by symmetry and didn’t need to be calculated; the entries
in green come from dividing the column by the pivot, as in the usual LU decomposition.

L Si

start







1 0 0 0
? 1 0 0
? ? 1 0
? ? ? 1













2 4 −2 2
4 9 −1 6
−2 −1 14 13

2 6 13 35







clear first column (then row)







1 0 0 0
2 1 0 0
−1 ? 1 0

1 ? ? 1













2 0 0 0
0 1 3 2
0 3 12 15
0 2 15 33







clear second column (then row)







1 0 0 0
2 1 0 0
−1 3 1 0

1 2 ? 1













2 0 0 0
0 1 0 0
0 0 3 9
0 0 9 29







clear third column (then row)







1 0 0 0
2 1 0 0
−1 3 1 0

1 2 3 1













2 0 0 0
0 1 0 0
0 0 3 0
0 0 0 2







Hence S = LDLT for

L =







1 0 0 0
2 1 0 0
−1 3 1 0

1 2 3 1






D =







2 0 0 0
0 1 0 0
0 0 3 0
0 0 0 2






.
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The Determinant Criterion We can also use the LDLT decomposition to prove the de-
terminant criterion that we discussed in class.

Theorem. A symmetric matrix S is positive-definite if and only if all upper-left determinants
are positive.

Proof. First we show that if S is positive-definite then all upper-left determinants are
positive. Let S1 be an r × r upper-left submatrix:

S =







∗
S1 ∗

∗
∗ ∗ ∗ ∗







Let x = (x1, . . . , x r , 0, . . . , 0) be a nonzero vector in Span{e1, . . . , er}. Then x T Sx only
depends on S1:

(x1 x2 x3 0)







∗
S1 ∗

∗
∗ ∗ ∗ ∗













x1
x2
x3
0






= (x1 x2 x3 0)







S1

 

x1
x2
x3

!

∗






= (x1 x2 x3)S1

 

x1
x2
x3

!

.

Since x T Sx > 0, this shows that S1 is also positive-definite. Hence the eigenvalues of S1
are positive, so det(S1)> 0.

We will prove the converse by induction: that is, we’ll prove it for 1× 1 matrices, then
for 2× 2 matrices using that the 1× 1 case is true, then for 3× 3 matrices using that the
2×2 case is true, etc. The 1×1 case is easy: it says that the matrix (a) is positive-definite
if and only if det(a) = a > 0. Suppose then that we know that an (n−1)× (n−1)matrix
with positive upper-left determinants is positive-definite. Let S be an n× n matrix with
positive upper-left determinants, and let S1 be the upper-left (n− 1)× (n− 1) submatrix
of S:

S =









a1

S1
...

an−1
a1 · · · an−1 an









Then we already know that S1 is positive-definite, so it has an LDL decomposition: say
S1 = L′1D1 L′T1 . Taking L1 = L′1

−1, we have L1S1 LT
1 = D1. Let L be the matrix obtained

from L1 by adding the vector en to the right and eT
n to the bottom, and likewise for D and

D1:

L =









0

L1
...

0
0 · · · 0 1









D =









0

D1
...

0
0 · · · 0 1









.
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Multiplying out LSLT and keeping track of which entries are multiplied by which gives

LSLT =









b1

L1S1 LT
1

...
bn−1

b1 · · · bn−1 bn









=









d1 b1
. . .

...
dn−1 bn−1

b1 · · · bn−1 bn









,

where d1, . . . , dn−1 > 0 are the diagonal entries of D1, (b1, . . . , bn−1) = L1(a1, . . . , an−1),
and bn = an. Since the di are nonzero, we can do n − 1 row operations Rn −=

bi
di

Ri to

clear the entries in the last row. Doing the same column operations Cn −=
bi
di

Ci clears the
entries in the last column as well. Letting E be the product of the (lower-unitriangular)
elementary matrices for these row operations, we get

E(LSLT )ET =









d1 0
... 0

dn−1 0
0 0 0 dn









.

Note that det(E) = det(L) = det(LT ) = det(ET ) = 1, so det(S) = d1 · · · dn−1dn. Since
det(S) > 0 and d1, . . . , dn−1 > 0, we have dn > 0 as well. Setting L2 = (EL)−1 and
D2 = ELSLT ET , this gives S = L2D2 LT

2 . Since S has an LDLT decomposition, it is positive-
definite, as desired. �


