Complex Numbers: Crash Course
Eg: Diagonalize $A=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ (CCW rotation by 90°)
The characteristic polynomial is

$$
p(\lambda)=\lambda^{2}-\operatorname{tr}(A) \lambda+\operatorname{det}(A)=\lambda^{2}+1
$$

This has no real roots: $\lambda^{2}+1=0 \Leftrightarrow \lambda^{2}=-1$.
Solution: Add a $\sqrt{-1}$ to our number system!
Def: The unit imaginary number is a number i such that $i^{2}=-1$. A complex number is a number $a+b i$ for $a, b \in \mathbb{R}$.

$$
\mathbb{C}=\left\{a+b_{i}: a, b \in \mathbb{R}\right\}
$$

is the set of all complex numbers.
If $z=a+b i$ is a complex number, its

- real pant is $\operatorname{Re}(z)=a$, and its
- imaginary part is $\operatorname{Im}(z)=b$.

We can add/subtract \& multiply complex numbers:

$$
\begin{aligned}
(a+b i) \pm(c+d i) & =(a \pm c)+(b \pm d) i \\
(a+b i)(c+d i) & =a c+a d i+b c i+b d i^{2} c=-1 \\
& =(a c-b d)+(a d+b c) i
\end{aligned}
$$

Division: see p. 4

Question: Wait! Why can I just declare that -1 has a square root?
Answer 1: Why can you declare that 2 has a square root? You cant write it down -it's an infinite non-repeating decimal...
Answer 2: Jake Math 401/501 for a systematic treatment.
Compla numbers have an additional algebraic operation.
Def: The complex conjugate of $z=a+b i$ is

$$
\bar{z}=a-b_{i}
$$

(replace i by $-i=$ the other $\sqrt{-1}$)
Check: $\overline{(z+w)}=\bar{z}+\bar{w} \quad \overline{z w}=\bar{z} \cdot \bar{w} \quad \overline{\bar{z}}=z$
$N B$: if $z=a+b i$ then

- $z+\bar{z}=(a+b i)+(a-b i)=2 a=2 \operatorname{Re}(z)$
- $z-\bar{z}=\left(a+b_{i}\right)-\left(a-b_{i}\right)=2 b_{i}=2 i \operatorname{Im}(z)$

$$
z+\bar{z}=2 \operatorname{Re}(z) \quad z-\bar{z}=2 i \operatorname{Im}(z)
$$

Since a complex number $z=a+b i$ is determined by two real numbers a and b, we can draw \mathbb{C} as a plane:

Complex conjugation negates the imaginary coordinate: it flips over the real axis.

NB: A real number is also a complex number:

$$
a \in \mathbb{R} \leadsto a+O_{i} \in \mathbb{C}
$$

So \mathbb{C} contains \mathbb{R}. $N B: z \in \mathbb{R} \Leftrightarrow z=\bar{z}$
$N B:$ If $z=a+b i$ then

$$
z \bar{z}=(a+b i)(a-b i)=a^{2}-b_{i}^{2}=a^{2}+b^{2} \leftarrow \begin{gathered}
\text { nonnegative } \\
\text { number } \\
\text { number }
\end{gathered}
$$

Def: The modulus of z is $|z|=\sqrt{z \bar{z}}$
This is its length as a vector in the complex plane.
$E_{g}: z=2+i$

$$
\leadsto|z|=\sqrt{4+1}=\sqrt{5}
$$

Eg: If $a \in \mathbb{R}$ then $a=a+0 i$ and

$$
|a|=\sqrt{a^{2}+0^{2}}=\sqrt{a^{2}}=|a|
$$

(the modulus is the usual absolute value)
Check: $|z w|=|z| \cdot|w| \quad|\bar{z}|=|z|$
Here's how to take a reciprocal of $z=a+b i \neq 0$:

$$
\begin{gathered}
\frac{1}{z}=\frac{1}{z} \cdot \frac{\bar{z}}{\bar{z}}=\frac{\bar{z}}{z \bar{z}}=\frac{\bar{z}}{|z|^{2}} \\
\frac{1}{z}=\frac{\bar{z}}{|z|^{2}} \text { or } \quad \frac{1}{a+b i t i v e}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} i
\end{gathered}
$$

Check: $\left|\frac{1}{z}\right|=\frac{1}{|z|}$
Eg: $\frac{1}{2+i}=\frac{2-i}{5}=\frac{2}{5}-\frac{1}{5} i$
Check: $(2+i)\left(\frac{2}{5}-\frac{1}{5} i\right)=\frac{4}{5}+\frac{1}{5}+\left(\frac{2}{5}-\frac{2}{5}\right) i=1$
Now we can divicle too: $\frac{10}{z}=w \cdot \frac{1}{z}=\frac{v \bar{z}}{|z|^{2}}$.

Polar Coordinates
Recall that a point in the (x, y)-plane can be specified in polar coordinates (r, θ) :

$$
r=\text { length of }\binom{x}{y}=\sqrt{x^{2}+y^{2}}
$$

$\theta=$ angle $\binom{x}{y}$ makes with the positive x-axis $= \pm \arctan \left(\begin{array}{l}\frac{y}{x}\end{array}\right)$

To go from polar coordinates back to Cartesian (x, y)-coordinates:

$$
\begin{aligned}
(r, \theta) \leadsto \quad x & =r \cos \theta \\
y & =r \sin \theta
\end{aligned}
$$

If we apply this to a complex number $z=a+b i$:

$$
\begin{aligned}
r & =\sqrt{a^{2}+b^{2}}=|z| \leadsto a=|z| \cos \theta \quad b=|z| \sin \theta \\
& \Rightarrow z=|z|(\cos \theta+i \sin \theta)
\end{aligned}
$$

Def: The argument of $z=a+b i$ is $\arg (z)=\theta=$ the angle z makes with the positive real axis.

So you can specify a complex number in 2 ways: (Cartesian coords/real \& imaginary parts)

$$
z=a+b i
$$

(Polar coords/modulus \& argument)

$$
z=|z|(\cos \theta+i \sin (\theta)) \quad \theta=\arg (z)
$$

Eg: $z=1+i \leadsto|z|=\sqrt{1+1}=\sqrt{2}$

$$
\begin{aligned}
& \arg (z)=45^{\circ} \\
& \omega \quad z=\sqrt{2}\left(\cos \left(45^{\circ}\right)+i \sin \left(45^{\circ}\right)\right)
\end{aligned}
$$

Check: $\cos \left(45^{\circ}\right)=\sin \left(45^{\circ}\right)=1 / \sqrt{2}$

$$
z=1+i=\sqrt{2}(1 / \sqrt{2}+i / \sqrt{2})
$$

Facts:

$$
\cdot \arg (\bar{i})=-\arg (z)
$$

(flip over real axis)

$$
\text { - } \begin{aligned}
\arg (1 / z) & =-\arg (z) \\
& \left(1 / z=\bar{z} /|z|^{2}=(\text { positive number }) \cdot \bar{z}\right)
\end{aligned}
$$

Fact: $\arg (z \omega)=\arg (z)+\arg (\omega)$
Proof: This is a trig identity!

$$
\begin{aligned}
& z=|z|(\cos \theta+i \sin \theta) \quad \theta=\arg (z) \\
& \omega=|\omega|(\cos \varphi+i \sin \varphi) \quad \varphi=\arg (\omega) \\
& z \omega=|z| \cdot|\omega|(\cos \theta+i \sin \theta)(\cos \varphi+i \sin \varphi) \\
&=|z \omega|(\cos \theta \cos \varphi-\sin \theta \sin \varphi+(\cos \theta \sin \varphi+\sin \theta \cos \theta) i) \\
& \text { ave }=|z \omega|(\cos (\theta+\varphi)+i \sin (\theta+\varphi)) \\
& \Rightarrow \theta+\varphi=\arg (z \omega)
\end{aligned}
$$

We like polar coordinates because multiplication is easier!

$$
\begin{gathered}
z=|z|(\cos \theta+i \sin \theta) \quad 0=|\omega|(\cos \varphi+i \sin \varphi) \\
\leadsto z \omega=|z||\omega|(\cos (\theta+\varphi)+i \sin (\theta+\varphi)) \\
\text { ie. }|z \omega|=|z||\omega|, \arg (z \omega)=\arg (z)+\arg (\omega) \\
\bar{z}=|z|(\cos \theta-i \sin \theta) \quad \frac{1}{z}=\frac{1}{|z|}(\cos \theta-i \sin \theta)
\end{gathered}
$$

Exercise: expand the product

$$
(\cos \theta+i \sin \theta)^{3}=\cos (3 \theta)+i \sin (3 \theta)
$$

to derive the triple-angle formulas.

Euler's Formula: For any real number θ,

$$
e^{i \theta}=\cos \theta+i \sin \theta
$$

Proof: Take Taylor expansions of both sides...
Polar Foo of Complex Numbers, Alternative:

$$
z=|z| e^{i \theta} \quad \theta=\arg (z)
$$

This makes the formulas on $p .7$ easter to remember:

$$
\begin{aligned}
& z \omega=\left(|z| e^{i \theta}\right)\left(|\omega| e^{i \varphi}\right)=|z| \cdot|\omega| e^{i(\theta+\varphi)} \\
& \bar{z}=|z| e^{-i \theta} \\
& \frac{1}{z}=\left(|z| e^{i \theta}\right)^{-1}=\frac{1}{|z|} e^{-i \theta}
\end{aligned}
$$

Eg: $-1=e^{i \pi}$
$1+i=\sqrt{2} e^{i \pi / 4}$
(cs. p.6)
You can exponentiate any complex number:

$$
e^{a+b i}=e^{a} e^{b_{i}}=e^{a}(\cos b+i \sin b)
$$

Since $\sin (-b)=-\sin b$, we have

$$
e^{\bar{z}}=\overline{e^{z}} \quad \text { for any } z \in C
$$

It tums out that once $x^{2}+1=0$ has a solution, then any polynomial has a root!

Fundamental theorem of Algebra:
Every polynomial

$$
\begin{gathered}
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
a_{0}, a_{1}, \cdots, a_{n} \in \mathbb{C} \quad a_{n} \neq 0
\end{gathered}
$$

can be factored into linear terms:

$$
p(x)=a_{n}\left(x-\lambda_{1}\right) \cdots\left(x-\lambda_{n}\right) \quad \lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}
$$

Eg: $p(x)=x^{2}+x+1$
Use the quadratic formula:

$$
\begin{array}{r}
x=\frac{1}{2}(-1 \pm \sqrt{1-4})=\frac{1}{2}(-1 \pm i \sqrt{3}) \\
\sqrt{-3}=\sqrt{-1} \cdot \sqrt{3}=i \sqrt{3}
\end{array}
$$

So $p(x)=\left(x-\frac{1}{2}(-1+i \sqrt{3})\right)\left(x-\frac{1}{2}(-1-i \sqrt{3})\right)$
Eg: $p(x)=x^{2}+1=(x+i)(x-i)$
So now $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ has two eigenvalues 士i so it's diagonalizable!

Real Polynomials:
if $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} x+a_{0}$ has
real coefficients $a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}$
then its complex roots come in conjugate pairs:

$$
p(\lambda)=0 \Longleftrightarrow p(\bar{\lambda})=0
$$

Check:

$$
\begin{aligned}
p(\bar{\lambda}) & =a_{n} \bar{\lambda}^{n}+a_{n-1} \bar{\lambda}^{n-1}+\cdots+a_{1} \bar{\lambda}+a_{0} \\
\left(\bar{a}_{i}=a_{i}\right) & =\overline{a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\cdots+a_{1} \lambda+a_{0}} \\
& =\overline{p(\lambda)}
\end{aligned}
$$

So $p(\lambda)=0 \Longleftrightarrow p(\bar{\lambda})=0$.
Eg: The roots of $p(x)=x^{2}+x+1$ are

$$
\lambda=\frac{1}{2}(-1+i \sqrt{3}) \text { and } \bar{\lambda}=\frac{1}{2}(-1-i \sqrt{3})
$$

