Vector and Matrix Algebra
These basic definitions don't need to be done in a live lecture - that's why I'm recording the one.
Since weill be doing algebra with vectors \& matrices as well as numbers, we give "numbers" a new name to distinguish them.
"definition";
Def: A scalar is a real number.
"is an dement of"

Notation: $c \in \mathbb{R}$ c the set of all

$$
E_{g} \text { "example" }_{2}^{2} 2,-\pi, e^{\sqrt{3}}, \quad 0 \in \mathbb{R}
$$

Def: A vector is a finite (ordered) list of numbers
The size of a vector is the length of the list.
The numbers in the list are the coordinates.
Notation: "is an clement of" "the set of all lists $n \in \mathbb{R}^{n} \leftarrow$ the size
Eg: $\quad v=\left(\begin{array}{c}2 \\ -\pi \\ e^{\frac{\pi}{3}}\end{array}\right) \in \mathbb{R}^{3} \quad \omega=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 1\end{array}\right) \in \mathbb{R}^{4}$
$($ size 3$) \quad($ size 4$)$
"note",
NB We will usually wite vectors in a column like $v=\left(\begin{array}{l}1 \\ 3 \\ 3\end{array}\right) \quad$ (a "column vector") but this is just notation; $v=(1,2,3)$ means the same thing.

NB = Some people decorate vectors with boldface:
arrow: \vec{v}
but I want do that since it's annoying and it's usually clear from context which letters represent vectors.

Important Example:
The unit coordinate vectors in \mathbb{R}^{n} are vectors with one coordinate $=1$ and the rest $=0$.

$$
\text { Notation: } \quad e_{1}=\left(\begin{array}{llll}
1 \\
0 \\
\vdots \\
0
\end{array}\right) \quad e_{2}=\left(\begin{array}{l}
0 \\
1 \\
\vdots \\
0
\end{array}\right) \quad \cdots \quad e_{n}=\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
0
\end{array}\right) \in \mathbb{R}^{n}
$$

This notation is fixed for the whole semester.
The size of e_{i} must be inferred from context.
In \mathbb{R}^{3} the unit coordinate vectors are:

$$
e_{1}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad e_{2}=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right) \quad e_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Ey: The zero rector is the rector

$$
O=\left(\begin{array}{l}
0 \\
\vdots \\
0
\end{array}\right) \in \mathbb{R}^{n}
$$

(again the size must be inferred from context)
Def: Two rectors are equal if they have the same size and the same coordinates.
Eg: $\binom{0}{0} \neq\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$ since the sizes are different.
Vector Algebra
You can multiply a vector by a scalar:
Scalar Multiplication:

$$
\begin{gathered}
c \in \mathbb{R}, \quad v=\left(\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} \leadsto c \cdot v=\left(\begin{array}{c}
c x_{1} \\
\vdots \\
c x_{n}
\end{array}\right) \in \mathbb{R}^{n} \\
(\text { scalar }) \times(\text { vector })=(\text { rector })
\end{gathered} \begin{aligned}
E_{g}: 2\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
2 \cdot 1 \\
2 \cdot-2 \\
2
\end{array}\right)=\left(\begin{array}{l}
2 \\
4 \\
6
\end{array}\right) \quad 0 \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{c}
0-1 \\
0 \\
0.2 \\
0
\end{array}\right)=0 \\
-\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=(-1) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\left(\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right)
\end{aligned}
$$

You can add \& subtract vectors componentwise:
Vector Addition \& Subtraction:

$$
\begin{aligned}
& u=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad v=\left(\begin{array}{c}
y_{c} \\
\vdots \\
y_{n}
\end{array}\right) \in \mathbb{R}^{2} \\
& \leadsto u \pm v=\left(\begin{array}{c}
x_{1} \pm y_{1} \\
\vdots \\
x_{n} \pm y_{n}
\end{array}\right) \in \mathbb{R}^{n} \\
&(\text { vector }) \pm(\text { vector })=(\text { vector })
\end{aligned}
$$

NB: You can only add/subtract vectors of the same size.

$$
E g=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\left(\begin{array}{l}
\pi \\
\frac{\pi}{2} \\
\sqrt{2}
\end{array}\right)=\left(\begin{array}{l}
1+\pi \\
2+e \\
3+\sqrt{2}
\end{array}\right) \quad\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)+\binom{4}{5}=X
$$

You can "multiply" two vectors, but you get a scalar:
Dot Product/Inner Product:

$$
\begin{gathered}
u=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n} \quad v=\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \in \mathbb{R}^{2} \\
\rightsquigarrow u \cdot v=x_{1} y_{1}+\cdots+x_{n} y_{n} \in \mathbb{R} \\
(\text { vector) }(\text { vector })=(\text { scalar })
\end{gathered}
$$

NB: You can only dot vectors of the same size.

$$
\begin{aligned}
& \text { Eg: }\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-1 \\
4
\end{array}\right)=1 \cdot 2+2 \cdot(-1)+3 \cdot 4=12 \\
& E g:\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right)=1(-2)+2(-1)+2(2)=0 \\
& E g:\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=1 \cdot 1+2 \cdot 2+3 \cdot 3=14
\end{aligned}
$$

$N B$: If $v=\left(x_{1}, \ldots, x_{n}\right)$ then $v \cdot v=x_{1}^{2}+\cdots+x_{n}^{2}$.
This is a nonnegative number; it is $=0$

$$
v=0 .
$$

"if and only if"
\rightarrow Do not write $v^{2}=r \cdot v$!
(You cant take any other "powers" of a vector: $V^{3}=V \cdot V \cdot V$ doesnt make sense because $v \in \mathbb{R}^{n}$ and $v-v \in \mathbb{R}$.)
Rules for Vector Algebra: $c \in \mathbb{R} u_{j}, \omega \in \mathbb{R}^{n}$
(I) $c(u \pm v)=c u \pm c v \quad$ (distributivity over scalar x)
(2) $u \cdot(c v)=c(u \cdot v)=(c u) \cdot v($ associativity of.)
(3) $u \cdot v=v \cdot u$
(commutativity of.)
(4) $u \cdot(v \pm w)=u \cdot v \pm u \cdot w$
(distributivity over.)

Eg: if $u, v, x, y \in \mathbb{R}^{n}$ then

$$
\begin{aligned}
(u+v) \cdot(x+y) & =(u+v) \cdot x+(u+v) \cdot y \\
& \stackrel{(3,4)}{=} u \cdot x+v \cdot x+u \cdot y+v \cdot y
\end{aligned}
$$

Upshot: FOIL works fine.
You can add and scalar multiply at the same time:
Def: A linear combination of vectors $v_{1,}, v_{n} \in \mathbb{R}^{m}$ with weights $x_{1}, \ldots, x_{n} \in \mathbb{R}$ is the vector

$$
x_{1} v_{1}+x_{2} v_{2}+\cdots+x_{n} v_{n} \in \mathbb{R}^{m}
$$

$E_{g}=$ If $r=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$ then

$$
\begin{aligned}
v & =\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right)=x_{1}\left(\begin{array}{c}
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{2}\left(\begin{array}{c}
0 \\
1 \\
\vdots \\
0
\end{array}\right)+\cdots+x_{m}\left(\begin{array}{l}
0 \\
\vdots \\
1
\end{array}\right) \\
& =x_{1} e_{1}+x_{2} e_{2}+\cdots+x_{m} e_{m}
\end{aligned}
$$

The coordinates of v became the weights of this linear combination of unit coordinate vectors.

Matrix Algebra
Def: A matrix is a box holding a 2D grid of numbers. The size of a matrix is (\#rous) $\times(\#$ cols).

We usually (bat not always) write $m=\#$ rows $n=\#$ cols
so A is an $m \times n$ matrix.
The (iss)-entry of A is the number in the $i^{\text {th }}$ row and $j^{\text {th }}$ column.
Eg: $A=\left(\begin{array}{llll}a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{32} & a_{34}\end{array}\right)$ is a 3×4 matrix.
The $\left(i_{i j}\right)$-entry is $a_{i j}$.
Eg: $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right)=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]^{6} \quad \begin{array}{cccc} \\ \left.\begin{array}{l}\text { somenare backets-it } \\ \text { square the same }\end{array}\right) \\ \text { ia } & 3 \times 2 & \text { matrix. }\end{array}$
The $(3,2)$-entry is 6 .
Def: The diagonal entries of a matrix are the (iss)entries for $i=j$:

$$
\left(\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right) \quad=\text { diagonal entries }
$$

Def: A matrix is diagonal if all non-diagonal entries are zero:

$$
\left(\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
0 & a_{22} & 0 & 0 \\
0 & 0 & a_{33} & 0
\end{array}\right) \quad=\text { any number }
$$

Def: A matrix is square if (\#raus) $=$ (\# columns):

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \quad 3 \times 3 \sim s \text { square }
$$

Eg: The $n x_{n}$ identity matrix is

$$
I_{n}=\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 & 1 \\
e_{1} & e_{2} & \cdots \\
1 & 1 & e_{n}
\end{array}\right)
$$

This is a square, diagonal matrix.
Its columns are e_{1}, \ldots, e_{n}. (S. are its rows.)
Eg: The $m \times n$ zero matrix is

$$
O=\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & \cdots & \vdots \\
0 & \cdots & 0
\end{array}\right)
$$

Thus is a diagonal matrix because the wondiagonal entries are zero.
(so are the diagonal entries)

Scalar Multiplication \& Matrix Addition/Subtraction are again done component wise?

$$
\begin{aligned}
c \cdot\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right) & =\left(\begin{array}{ll}
a_{11} & c a_{12} \\
c a_{12} & c a_{32} \\
c a_{31} & c a_{32}
\end{array}\right) \\
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right) \pm\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{11} & b_{22} \\
b_{31} & b_{32}
\end{array}\right) & =\left(\begin{array}{ll}
a_{11} \pm b_{11} & a_{12} \pm b_{12} \\
a_{21} \pm b_{21} & a_{22} \pm b_{22} \\
a_{31} \pm b_{31} & a_{32} \pm b_{32}
\end{array}\right)
\end{aligned}
$$

They satisfy distributivity: $c(A \pm B)=c A \pm c B$
NB: You can only add/subtract matrices of the same size.
$N B=$ A vector of size n is just an $n \times 1$ matrix
Def: A row vector is a matrix with one row. $u=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right) \quad 1 \times 3 \backsim$ row vector You can multiply a matrix \& a vector:

Matrix \times Vector $=$ Vector:
There are 2 ways to compute this:
(1) By Columns: If A has columns $v_{1}, \cdots, v_{n} \in \mathbb{R}^{m}$ then

$$
A_{x}=\left(\begin{array}{cc}
1 & 1 \\
v_{1} & \cdots \\
1 & v_{n}
\end{array}\right)\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)=x_{1} v_{1}+\cdots+x_{n} v_{n} \in \mathbb{R}^{m}
$$

for $x \in \mathbb{R}^{n}$.
The coordinates of x are the weights of the columns of A in a linear combination.
$A\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$ B the linear combination of the columns of A with weights $x_{1 y} \ldots, x_{n}$
(2) By Rows: If A has rows $\omega_{1} \ldots, \omega_{m} \in \mathbb{R}^{n}$ then

$$
\left.A x=\left(\begin{array}{c}
-\omega_{1}- \\
\vdots \\
-\omega_{m}-
\end{array}\right) x=\left(\begin{array}{c}
\omega_{1} \cdot x \\
\vdots \\
\omega_{m} \cdot x
\end{array}\right)\right\} \begin{gathered}
\text { dot } \\
\text { products }
\end{gathered}
$$

The it coordinate of $A x$ is (lo wi) - x

NB: You get the same answer either way! (\#2 is probably easier by hand)

$$
\begin{aligned}
& E g:\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right)\binom{2}{(-1} \stackrel{\# 1}{=} 2\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)-1\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=\left(\begin{array}{l}
2 \\
4 \\
6
\end{array}\right)-\left(\begin{array}{l}
4 \\
5 \\
6
\end{array}\right)=\left(\begin{array}{c}
-2 \\
-1 \\
0
\end{array}\right)
\end{aligned}
$$

$N B=A x$ only nates sense chen the size of x equals the number of columns of A :

$$
A B m \times n \leadsto x \in \mathbb{R}^{n} \quad A_{x} \in \mathbb{R}^{m}
$$

$$
\underset{(m \times n)}{A} \ln _{(n \times 1)} \leadsto \underset{(m \times 1)}{A_{m}}
$$

$$
\begin{aligned}
E g: A \cdot e_{i}^{* 1} & =0 \cdot(\operatorname{col}))+\cdots+1 \cdot(\omega 1 i)+\cdots+0 \cdot\left(d_{n}\right) \\
& =\operatorname{col} i
\end{aligned}
$$

$A e_{i}=$ the th column of A
identity matrix: P. 8
$E_{g}=I_{n} x=\left(\begin{array}{cc}1 & 1 \\ e_{1} & \cdots \\ 1 & e_{n} \\ 1 & 1\end{array}\right)\left(\begin{array}{l}x_{1} \\ \vdots \\ x_{n}\end{array}\right)=x_{1} e_{1}+\cdots+x_{n} e_{n}^{p \cdot 6}=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)=x$
$I_{n} x=x$ for all x

Matrix \times Matrix $=$ Matrix: Column Form
Let A be an $m \times n$ matrix.
Let B be an $n \times p$ matrix with columns $u_{1}, \ldots, u_{p} \in \mathbb{R}^{n}$
The product $A B$ is the $m x p$ matrix with columns $A u_{1}, \ldots, A_{u_{p}} \in \mathbb{R}^{m}$:

$$
A B=A\left(\begin{array}{cc}
1 & 1 \\
u_{1} & \cdots \\
1 & u_{p} \\
1 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 1 \\
A u_{1} & \cdots & A u_{p} \\
1 & & 1
\end{array}\right)
$$

$N B=$ This only makes sense if $(\# \operatorname{cols}$ of $A)=(\#$ rows of $B)$

$$
\underset{(m \times n) \times(n \times p) \leadsto m \times p}{A} \underset{m B}{A B}
$$

NB: You can compute the Aus using \#) or \#2.
Using \#2: if A has rows w_{1}, \ldots, w_{m} then

$$
\text { So }(i, j) \text { entry of } A B=(\text { now i ot } A) \cdot(\text { now } j \text { of } \mathbb{B})
$$

Eg: Compute $\left(\begin{array}{ccc}1 & 2 & 3 \\ -1 & 2 & -4\end{array}\right)\left(\begin{array}{cc}1 & 3 \\ 2 & 1 \\ 4 & -1\end{array}\right)$.

$$
\begin{aligned}
& 2 \times 3 \quad 3 \times 2 \leadsto 2 \times 2 \\
& \left(\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 2 & -4
\end{array}\right)\left(\begin{array}{cc}
1 & 3 \\
2 & 1 \\
4 & -1
\end{array}\right) \\
& \stackrel{\# 1}{=}\left(\begin{array}{c}
\left.\binom{1}{-1}+2\binom{2}{2}+4\binom{3}{-4} \quad 3\binom{1}{-1}+1\binom{2}{2}-1\binom{3}{-4}\right)
\end{array}\right. \\
& =\left(\begin{array}{cc}
17 & 2 \\
-13 & 3
\end{array}\right) \\
& \left(\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 2 & -4
\end{array}\right)\left(\begin{array}{cc}
1 & 3 \\
2 & 1 \\
4 & -1
\end{array}\right) \stackrel{\# 2}{=}\left(\begin{array}{cc}
1 \cdot 1 \cdot+2 \cdot 2+3 \cdot 4 & 1 \cdot 3+2 \cdot 1+3 \cdot(-1) \\
--1 \cdot 1+2 \cdot 2+(-4) \cdot 4 & -1 \cdot 3+2 \cdot 1+1+4)(-1)
\end{array}\right) \\
& =\left(\begin{array}{cc}
17 & 2 \\
-13 & 3
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& A u_{i}=\left(\omega_{i} \cdot u_{1}, \ldots, \omega_{n} \cdot u_{i}\right) \text { so } \\
& \left(\begin{array}{c}
-\omega_{1}- \\
-\omega_{2}- \\
\vdots \\
-\omega_{m}-
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & \\
u_{1} & u_{2} & \cdots \\
1 & 1 & \\
1 & 1
\end{array}\right)=\left(\begin{array}{cccc}
w_{1} \cdot u_{1} & w_{1} \cdot u_{2} & \cdots & w_{1} \cdot u_{p} \\
\omega_{2} \cdot u_{1} & w_{2} \cdot u_{2} & \cdots & w_{2}-u_{p} \\
\vdots & \vdots & \cdots \\
\omega_{m} \cdot u_{1} & w_{n} \cdot u_{2} & \cdots & \omega_{m} \\
\omega_{m} & u_{p}
\end{array}\right)
\end{aligned}
$$

identity matrix: p. 8
$E g: A I_{n}=A\left(\begin{array}{cc}1 & 1 \\ e_{1} & \cdots \\ 1 & e_{n} \\ 1 & \end{array}\right)=\left(\begin{array}{lll}A_{1}^{\prime} e_{1} & \cdots & A_{e_{n}}\end{array}\right)$

$$
=\left(\begin{array}{ccc}
\left(1^{+}+1\right. \\
1 & \text { of } A) & \cdots \\
1 & \left(n^{+n} \operatorname{col} \mid+A\right) \\
1
\end{array}\right)^{\prime}=A
$$

Eg: $I_{m} A=I_{m}\left(\begin{array}{ccc}1 & & 1 \\ v_{1} & \cdots & v_{n} \\ 1 & & 1\end{array}\right)=\left(\begin{array}{ccc}1 & 1 \\ I_{m} v_{1} & \cdots & I_{m} v_{n} \\ 1 & & 1\end{array}\right)^{p \cdot 12}=\left(\begin{array}{ccc}1 & & 1 \\ v_{1} & \cdots & v_{n} \\ 1 & & 1\end{array}\right)=A$

$$
I_{m} A=A=A I_{n}
$$

Def: A column rector times a row rector is called on outer product:

$$
\begin{aligned}
& \binom{x_{1}}{x_{2}} \cdot\left(\begin{array}{llll}
y_{1} & y_{2} & y_{3}
\end{array}\right)=\left(\begin{array}{lll}
x_{1} y_{1} & x_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3}
\end{array}\right) \\
& 2 \times 1 \quad 1 \times 3 \longrightarrow 2 \times 3
\end{aligned}
$$

$$
\begin{aligned}
\text { Eg: }\binom{1}{2}\left(\begin{array}{lll}
3 & 4 & 5
\end{array}\right) & =\left(\begin{array}{lll}
3 & \binom{1}{2} & 4\binom{1}{2} \\
5\binom{1}{2}
\end{array}\right) \\
& =\left(\begin{array}{lll}
3 & 4 & 5 \\
6 & 8 & 10
\end{array}\right)
\end{aligned}
$$

Matrix \times Matrix $=$ Matrix: Outer Product Form Let A be an $m \times n$ matrix. with columns $v_{1}, \ldots, v_{n} \in \mathbb{R}^{m}$
Let B be an $n \times p$ matrix with rows $w_{1}, \ldots, u_{n} \in \mathbb{R}^{P}$
The product $A B$ is the map matrix

$$
\begin{aligned}
A B= & \left(\begin{array}{cc}
1 & 1 \\
v_{1} & \cdots \\
1 & v_{n} \\
1 & \\
1
\end{array}\right)\left(\begin{array}{c}
-\omega_{1} \\
\vdots \\
-\omega_{n}
\end{array}\right) \\
= & v_{1} \omega_{1}^{\top}+v_{2} \omega_{2}^{\top}+\cdots+v_{n} \omega_{n}^{\top}
\end{aligned}
$$

($\omega_{i}{ }^{\top}$ means write ω_{i} as a row vector)

$$
\begin{aligned}
\text { Eg: } & \left(\begin{array}{ccc}
1 & 2 & 3 \\
-1 & 2 & -4
\end{array}\right)\left(\begin{array}{cc}
1 & 3 \\
2 & 1 \\
4 & -1
\end{array}\right) \\
& =\binom{1}{-1}\binom{1}{3}+\binom{2}{2}(2-1)+\binom{3}{-4}(4-1) \\
& =\left(\begin{array}{cc}
1 & 3 \\
-1 & -3
\end{array}\right)+\left(\begin{array}{cc}
4 & -2 \\
4 & -2
\end{array}\right)+\left(\begin{array}{cc}
12 & -3 \\
-16 & 4
\end{array}\right)=\left(\begin{array}{cc}
17 & 2 \\
-13 & 3
\end{array}\right)
\end{aligned}
$$

There is one more algebraic operation on matrices:

Def: Let A be an $m \times n$ matrix. Its transpose is the matrix A^{\top} whose rows are the columns of A (\& vice-versa)
The (iii)-entry of A is the (jji)-entry of A^{T} :

$$
A=\underset{\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)}{(1,2) \text {-entry }} \text { (}
$$

You can think of transposing as "reflecting over the diagonal"
Eg: $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right), \quad A^{\top}=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right)$
Eg: If $r=\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right) \in \mathbb{R}^{n} \quad w=\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right) \in \mathbb{R}^{n} \quad$ then

$$
v^{\top} \omega=\left(x_{1} \cdots x_{n}\right)\binom{y_{1}}{y_{n}}=\left(x_{1} y_{1}+\cdots+x_{1} y_{n}\right)=v \omega
$$

(a $|x|$ matrix is a scalar)

$$
v^{\top} \omega=v \cdot \omega \text { for } v, \omega \in \mathbb{R}^{n}
$$

Compare:
$V^{\top} \omega=$ inner product (scalar)
$V \omega^{T}=$ outer product (matrix)
Def: A matrix is symmetric if it equals its transpose: $A=A^{\top}$
$N B$: symmetric matrices are square!
Eg: $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right)$ is symmetric

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
0 & 5 & 6
\end{array}\right) \text { is not } A^{T}=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)
$$

Eg: Let A be an $m \times n$ matrix with columns $V_{y} \ldots, V_{n} \in \mathbb{R}^{n}$. Then A^{\top} is $n \times m \leadsto A^{\top} A$ is $n \times n$.

$$
\begin{aligned}
& A=\left(\begin{array}{cc}
v_{1} & 1 \\
v_{1} & \cdots \\
1 & 1
\end{array}\right) \leadsto A^{\top}=\binom{-v_{1}-}{-v_{n}}
\end{aligned}
$$

Since $v_{i} \cdot v_{j}=v_{j} \cdot v_{i}$, this is symmetric.

AFA is the matrix of column dot products. If is symmetric.
The matrix $A^{\top} A$ will play a huge role in the $د^{n d}$ half of the course.

Rules for Matrix Algebra
Let A,B,C be matrices. Assume all sics are compatible in what follows.
(1) $A(B C)=(A B) C$
(associativity)
\rightarrow Thus it makes sense to wite $A B C$
(evaluate $A B$ or $B C$ first \rightarrow sane thong)
\rightarrow If $C=r$ is a rector then $A(B v)=(A B)_{v}$
(2) $A(B \pm C)=A B \pm A C$
$(A \pm B) C=A C \pm B C$
(distributivity)
(3) $I_{m} A=A=A I_{n} \quad$ (identity)
(4) $A(C B)=c(A \mathbb{B})=(c A) B$ for $c \in \mathbb{R}$. (scalars)
(5) $\left(A^{\top}\right)^{\top}=A$
(double transpose)
(6) $(A \pm B)^{\top}=A^{\top} \pm B^{\top} \quad$ (transpose \& sums)
$(7)(A B)^{\top}=A_{5} B_{B}^{T} B^{\top} A^{\top}$ (transpose \& products)
$N B=A^{\top} B^{\top}$ may not even make sense: $A: \operatorname{man} \quad B: n \times p$

$$
\begin{gathered}
\leadsto A B:(m \times n) \cdot(n \times p)=(m \times p) \\
A^{\top} \beta^{\top}:(n \times m) \cdot(p \times n)=? ? \\
\beta^{\top} A^{\top}:(p \times n) \cdot(n \times m)=\left(p x_{m}\right) \\
E g:\left(A^{\top} A\right)^{\top}=A^{(6)}=A^{\top}\left(A^{\top}\right) \top^{(4)}=A^{\top} A \\
\\
\Rightarrow A^{\top} A \text { Symmetric (again) }
\end{gathered}
$$

Eg: If A is square then $A A$ makes sene, as do A.A.A, A.A.A.A , etc.

Def. If A is square then its nth power $(n>0)$ is

$$
A^{n}=A \cdots A \quad(n \text { times })
$$

This only makes sense because of associativity. Question: What about A^{-1} ? (week 3)

Caveats:
Commutativity foils in general:

$$
\begin{aligned}
& A B \neq B A \\
& E g:\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right) \\
&=\left(\begin{array}{ll}
3 & 2 \\
1 & 1
\end{array}\right) \\
&\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right)
\end{aligned}
$$

Cancellation fails in general:

$$
\left.\begin{array}{rl}
A \neq 0, \quad A B=A C & \Rightarrow B=C \\
\text { Eg: } & \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
5 & 6
\end{array}\right) \\
3 & 4
\end{array}\right) \neq\left(\begin{array}{ll}
5
\end{array}\right) .
$$

