Retie,
Last time: we did the outer product form SVD $A=m \times n$ of rank r

$$
A=\sigma_{r} u_{1} v_{1}^{\top}+\cdots+o_{r} u_{r} v_{s}^{\top}
$$

- $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$ are the singular values
- $\left\{v_{1}, \ldots, V_{r}\right\}$ B an orthonemal set in \mathbb{R}^{n}
- called the right singular vectors
- forms a bass for Raw (A)
- orthonormal eigenvectors of $A^{T} A$:

$$
A^{\top} A v_{i}=a_{i}^{2} v_{i}
$$

- $\{u, \ldots, u r\}$ is an orthonemal set in \mathbb{R}^{m}
- called the left singular vectors
- forms a bass for Col (A)
- orthonormal eigenvectors of $A A^{T}$:

$$
A A^{\top} u_{i}=0_{i}^{2} u_{i}
$$

The singular vectors are related by

$$
A v_{i}=a_{i} u_{i} \quad A^{\top} u_{i}=\sigma_{i} r_{1}
$$

SVD of A^{\top} is

$$
A^{\top}=\sigma_{1} v_{1} u_{1}^{\top}+\cdots+o_{1} v_{n} u_{c}^{\top}
$$

NB: If A is a wide matrix $(m\langle n)$ then $A^{+} A: n \times n \quad A A^{\top}: m \times m \leftarrow$ smaller
So it's easter to compute eigenvalues \& eigenvectors of $A A^{\top}$!

If A is wile, compute the SVD of A^{T}.
Eg: $A=\left(\begin{array}{cccc}-10 & 10 & -10 & 10 \\ 10 & 5 & 10 & 5\end{array}\right)$

$$
A^{\top} A=\left(\begin{array}{cccc}
200 & -50 & 200 & -50 \\
-50 & 125 & -50 & 125 \\
200 & -50 & 200 & -50 \\
-50 & 125 & -50 & 125
\end{array}\right) \quad \text { yikes! }
$$

Let's compute the SVD of A^{\top} instead.

$$
\begin{aligned}
& A A^{\top}=\left(\begin{array}{cc}
400 & -100 \\
-100 & 250
\end{array}\right) \quad \rho(\lambda)=(\lambda-450)(\lambda-200) \\
& \lambda_{1}=450 \Rightarrow \sigma_{1}=\sqrt{450}=15 \sqrt{2} \quad u_{1}=\frac{1}{\sqrt{5}}\binom{2}{-1} \quad v_{1}=\frac{1}{\sigma_{1}} A_{u_{1}}^{\top}=\frac{1}{\sqrt{10}(}\left(\begin{array}{c}
-2 \\
-2 \\
1
\end{array}\right) \\
& \lambda_{2}=200 \Rightarrow \sigma_{2}=\sqrt{200}=10 \sqrt{2} \quad u_{2}=\frac{1}{\sqrt{5}}\binom{1}{2} \quad v_{2}=\frac{1}{\sigma_{2}} A_{u_{2}}^{\top}=\frac{1}{\sqrt{10}}\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \\
& \\
& \Rightarrow A^{\top}=15 \sqrt{2} v_{1} u_{1}^{\top}+10 \sqrt{2} v_{2} u_{2}^{\top} \quad \text { ai are right- } \\
& \\
& \Rightarrow A=15 \sqrt{2} u_{1} v_{1}^{\top}+10 \sqrt{2} u_{2} v_{2}^{\top} \quad \text { singular vectors } \quad \text { of } A^{\top} \sim \text { lest - }
\end{aligned}
$$

SVD: Matrix From
Let A be an $m \times n$ matrix of rank r.
Then $A=U \Sigma V^{\top}$ where:

- $U=\left(\begin{array}{lll}U_{1} & \cdots & u_{m}^{\prime} \\ 1 & u_{m}\end{array}\right)$ is an $m \times m$ orthoynal matrix
- $V=\left(\begin{array}{ccc}v_{1} & \ldots & v_{n} \\ 1 & 1 & 1\end{array}\right)$ is an nan orthogonal matrix
- $\Sigma=\left(\begin{array}{lll}\sigma_{1} & 1 & 0 \\ 0 & \sigma_{0} \\ 0 & \sigma_{0}\end{array}\right)$ is an $m \times n$ diagonal matrix. $a_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$ ore the singular values
Where did $u_{\text {rest }}, \ldots, u_{m}$ and $v_{\text {rit }} \ldots, r_{n}$ come from??
They're orthonomal bases for the other two fundamental subspaces!

$$
\begin{array}{ll}
C_{0}(A):\left\{u_{0}, u_{n}\right\} & \operatorname{Nal}\left(A^{\top}\right):\left\{u_{r+1}, \ldots, u_{n}\right\} \\
\operatorname{Row}_{0}(A):\left\{v_{v_{1}}, \ldots, v_{c}\right\} & \operatorname{Nul}(A):\left\{v_{+}+v_{1}, v_{n}\right\}
\end{array}
$$

Procedure to Compute $A=U \Sigma V^{\top}$:
(1) Compute the singular values and singular vectors

$$
\left\{v_{1}, \ldots, v_{r}\right\}\left\{u_{1,}, \ldots, u_{r}\right\} \sigma_{1} \ldots, \sigma_{r}
$$

as before
(2) Find orthonormal bases $\left\{u_{r e t y}, \ldots u_{m}\right\}$ for $\operatorname{Nu}\left(A^{T}\right)$
$\left\{v_{\text {ray }}, \ldots, V_{m}\right\}$ for $\mathrm{Nal}(A)$
using Gram-Schmidt.
(3)

$$
\begin{aligned}
& \Sigma=\left(\begin{array}{cccc}
a & & & \\
1 & \sigma_{0} & 0 \\
0 & \sigma_{r} & 0 & 0
\end{array}\right) \quad(\text { same size as } A)
\end{aligned}
$$

Proof: Use the outer product version of matrix mull:

$$
\begin{aligned}
& =\left(\begin{array}{lll}
u_{1} & u_{1} \\
1 & u_{m}
\end{array}\right)\left(\begin{array}{c}
-\sigma_{1} v_{1} \\
-a_{1} \\
-a_{n} \\
\vdots \\
- \\
0
\end{array}\right) \\
& =\sigma_{i} u_{1} r_{r}^{\top}+\cdots+\sigma_{r} u_{r} v_{r}^{\dagger}+0+\cdots+0
\end{aligned}
$$

Eg: $A=\left(\begin{array}{cccc}-10 & 10 & -10 & 10 \\ 10 & 5 & 10 & 5\end{array}\right)$
(1)

$$
\begin{gathered}
A=15 \sqrt{2} u_{1} v_{1}^{\top} T+10 \sqrt{2} u_{2} v_{2} T
\end{gathered} \text { for } \begin{gathered}
u_{1}=\frac{1}{\sqrt{5}}\binom{2}{-1} \quad v_{1}=\frac{1}{\sqrt{10}}\left(\begin{array}{c}
-2 \\
-2 \\
1
\end{array}\right) \\
u_{2}=\frac{1}{\sqrt{5}}\binom{1}{2} \quad v_{2}=\frac{1}{\sqrt{10}}\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right)
\end{gathered}
$$

(2) $\mathrm{Nal}\left(\mathrm{A}^{\top}\right)=\{0\}$ because $5=m$

$$
\begin{gathered}
\operatorname{Nul}(A):\left(\begin{array}{cccc}
-10 & 10 & -10 & 10 \\
10 & 5 & 10 & 5
\end{array}\right) \stackrel{\text { ref }}{\text { ref }}\left(\begin{array}{cccc}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \\
\stackrel{\text { VF }}{P N} S_{\text {pan }}\left\{\left(\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right)\right\}
\end{gathered}
$$

(3) So $A=U \Sigma V^{\top}$ for

$$
\begin{gathered}
U=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right) \quad \sum=\left(\begin{array}{cccc}
15 \sqrt{2} & 0 & 0 & 0 \\
0 & 10 \sqrt{2} & 0 & 0
\end{array}\right) \\
V=\left(\begin{array}{cccc}
-2 / \sqrt{10} & 1 / \sqrt{10} & -1 / \sqrt{2} & 0 \\
1 / \sqrt{10} & 2 / \sqrt{10} & 0 & -1 / \sqrt{2} \\
-2 / \sqrt{10} & 1 / \sqrt{10} & 1 \sqrt{2} & 0 \\
1 / \sqrt{10} & 2 / \sqrt{10} & 0 & 1 / \sqrt{2}
\end{array}\right)
\end{gathered}
$$

$N B: A=U \Sigma V^{\top}$ contains full orthogonal diagonalizations of $A^{\top} A$ and of $A A^{\top}$:

It also contains orthonomal bases for all four subspaces:

$$
\begin{aligned}
& \text { 0.n. bars on. bast, } \\
& \text { for } \operatorname{Col}(A) \text { for } N_{u}\left(A^{\top}\right) \\
& U=\left(\begin{array}{cccc}
\cdots & & \cdots & 1 \\
1 & & 1 & \\
u_{1} & \cdots & u_{r} & u_{r+1} \\
1 & 1 & 1 & u_{m}
\end{array}\right) \\
& j \leq r \quad A v_{i}=\sigma_{i} u_{i} \uparrow \backslash A^{\top} u_{i}=\sigma_{i} v_{i} \quad A v_{i}=0 \uparrow \downarrow A^{\top} u_{i}=0 \quad i>r
\end{aligned}
$$

The Psendo-Inverse
This R a matrix A^{+}that is the "best possible" substitute for A^{-1} when A is not invertible.

- Works for non-square matrices: if A is $m \times n$ then A^{+}is $n \times m$
- $A^{+} b$ is the shortest least-squares solution of $A x=b$.

First let's do diagonal matrices.
Def: If \sum is an $m \times n$ diagonal matrix with nonzero diagonal entries $\sigma_{1}, \ldots, \sigma_{\sigma}$, its pseado-inverie \sum_{i}^{+}is the $n \times m$ diagonal matrix with nonzero diagonal entries $\sigma_{r}^{-1}, \ldots, \sigma_{r}^{-1}$.

$$
\Sigma=\left(\begin{array}{llll}
3 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 \\
0 & 0 & 0 & 0 \\
0
\end{array}\right) \sim S^{+}=\left(\begin{array}{cccc}
1 / 3 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

NB: If Σ is invertible (hence square) then $\Sigma^{+}=\Sigma^{-1}$:

$$
\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)^{-1}=\left(\begin{array}{ccc}
1 / 3 & 0 & 0 \\
0 & 1 / 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Now lets do general matrices.

Def: Let A be an $m \times n$ matrix with SVD

$$
A=\sigma_{1} u_{1} v_{1}^{\top}+\cdots+\sigma_{r} u u_{r} v_{r}^{\top} \quad A=U \Sigma V^{\top}
$$

The pseudo-inverse of A is the $n \times m$ matrix

$$
A^{+}=\frac{1}{\sigma_{1}} v_{1} u_{1}^{\top}+\cdots+\frac{1}{\sigma_{r}} v_{r} u_{r}^{\top} \quad A^{+}=V \Sigma^{+} u^{\top}
$$

This has the same singular rectors (switch right \& left) and reciprocal singular values.

Eg: $A=\left(\begin{array}{cccc}-10 & 10 & -10 & 10 \\ 10 & 5 & 10 & 5\end{array}\right)=15 \sqrt{2} u_{1} v_{1}{ }^{\top}+10 \sqrt{2} u_{2} v_{2} T$
for $\quad u_{1}=\frac{1}{\sqrt{5}}\binom{2}{-1} \quad v_{1}=\frac{1}{\sqrt{10}}\left(\begin{array}{c}-2 \\ -2 \\ 1\end{array}\right)$

$$
\begin{aligned}
u_{2} & =\frac{1}{\sqrt{5}}\binom{1}{2} \quad v_{2}=\frac{1}{\sqrt{10}}\binom{\prime}{2} \\
\leftrightarrow A^{+} & =\frac{1}{15 \sqrt{2}} v_{1} u_{1}^{\top}+\frac{1}{10 \sqrt{2}} v_{2} u_{2}^{\top} \\
& =\frac{1}{15 \sqrt{2}} \cdot \frac{1}{\sqrt{10}}\left(\begin{array}{c}
-2 \\
-2 \\
-2
\end{array}\right) \cdot \frac{1}{\sqrt{5}}(2-1)+\frac{1}{10 \sqrt{2}} \cdot \frac{1}{\sqrt{10}}\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \cdot \frac{1}{\sqrt{5}}(12) \\
& =\frac{1}{150}\left(\begin{array}{cc}
-4 & 2 \\
2 & -1 \\
-4 & 2 \\
2 & -1
\end{array}\right)+\frac{1}{100}\left(\begin{array}{ll}
1 & 2 \\
2 & 4 \\
2 & 2 \\
2
\end{array}\right)=\frac{1}{300}\left(\begin{array}{cc}
-5 & 10 \\
10 & 0 \\
-5 & 0 \\
10 & 10
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& N B:
\end{aligned}
$$

This is almost the SVD of A^{t} (the singular values are just ordered backward: $\sigma_{1}^{-1} \leq \cdots \leq \sigma^{-1}$).
So we see:

$$
\begin{aligned}
& \operatorname{Col}(A)=\operatorname{Row}\left(A^{+}\right)=\operatorname{Row}\left(A^{\top}\right) \\
& \operatorname{Nul}\left(A^{\top}\right)=\operatorname{Nul}\left(A^{+}\right)=\operatorname{Nal}\left(A^{\top}\right) \\
& \operatorname{Row}(A)=\operatorname{Col}\left(A^{+}\right)=\operatorname{Col}\left(A^{\top}\right) \\
& \operatorname{Nul}(A)=\operatorname{Nul}\left(A^{+T}\right)=\operatorname{Nul}\left(A^{+T}\right)
\end{aligned}
$$

NB. If A is mertible then $r=m=n$ and \sum is invertible, so $\Sigma^{+}=\Sigma^{-1}$ and

$$
\begin{aligned}
A A^{+} & =\left(U \Sigma V^{\top}\right)\left(V \sum_{i}^{+} U^{\top}\right) \\
& =U \Sigma\left(V^{\top} V\right) \Sigma_{i}^{=-1} U^{\top}=U \Sigma \Sigma^{-1} I_{n} U^{\top}=U U^{\top}=I_{n}
\end{aligned}
$$

A is invertible $\Longleftrightarrow A^{-1}=A^{+}$

So what are $A^{+} A$ and $A A^{+}$if A is not invertible?
Prep:

$$
\begin{aligned}
& A^{+} A=\text { projection onto } \operatorname{Row}(A) \\
& A A^{+}=\text {projection onto } \operatorname{Col}(A)
\end{aligned}
$$

Proof

$$
\begin{aligned}
& A A^{+}=\left(U \Sigma^{\top} V^{\top}\right)\left(V \Sigma_{i}^{+} U^{\top}\right)=U \Sigma_{i}\left(V^{\top} V\right) \Sigma_{1}^{-T} U^{\top} \\
& =U \Sigma \Sigma^{+} U^{\top}=U\left(\begin{array}{cc}
\sigma_{i} & 0 \\
0 & a_{0} \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a_{1}^{-1} & 0 \\
0 & \sigma_{\sigma_{j}^{\prime-}}
\end{array}\right) U^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& =u_{1} u_{1}^{\top}+\cdots+u_{r_{1}}{ }^{\top}
\end{aligned}
$$

This is the outer product formula for $P_{v} V=\operatorname{Col}(A)$ because $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal basis for $\operatorname{Co}(A)$ $A^{\dagger} A$: similar.

Vector form: for iss we have

$$
\begin{aligned}
& A^{\dagger} A v_{i}=A^{+}\left(\sigma_{i} u_{i}\right)=\sigma_{i} A^{\dagger} u_{i}=\sigma_{i} \cdot \frac{1}{\sigma_{i}} v_{i}=v_{i} \\
& A A^{+} u_{i}=A\left(\frac{1}{\sigma_{i}} v_{i}\right)=\frac{1}{\sigma_{i}} A v_{i}=\frac{1}{\sigma_{i}} \cdot \sigma_{i} u_{i}=u_{i}
\end{aligned}
$$

Bat for iss we have

$$
\begin{array}{ll}
A^{+} A v_{i}=A^{+} \cdot 0=0 & \left(v_{i} \in N_{u l}(A)\right) \\
A A^{+} u_{i}=A \cdot 0=0 & \left(u_{i} \in N_{u l}\left(A^{+}\right)=N_{u l}\left(A^{+}\right)\right)
\end{array}
$$

Recall: A projection matrix Pr is the identity matrix $\Leftrightarrow V$ is all of \mathbb{R}^{n}

Consequence:

- $A^{\dagger} A=I_{n} \Longleftrightarrow A$ has full column rank

$$
\left(\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}=\xi_{0} 3^{+}=\mathbb{R}^{n}\right)
$$

- $A A^{\dagger}=I_{m} \Longrightarrow A$ has full row rank

$$
\left(\operatorname{Col}(A)=\mathbb{R}^{m}\right)
$$

NB: This shows that:

- A has fall column rank \Longleftrightarrow A admits a left inverse
- A has fall row rank \Longleftrightarrow A admits a right inverse (See HWS for the "E" implications.) $\underset{(\operatorname{matrix} B}{\substack{\text { with } A B=I_{m} \\ \text {) }}}$

$$
\left.\begin{array}{l}
\text { Eg: } A=\left(\begin{array}{cccc}
-10 & 10 & -10 & 10 \\
10 & 5 & 10 & 5
\end{array}\right) \quad A^{+}=\frac{1}{300}\left(\begin{array}{cc}
-5 & 10 \\
10 & 10 \\
-5 & 10 \\
10 & 10
\end{array}\right) \\
A^{+} A=\frac{1}{300}\left(\begin{array}{cc}
-5 & 10 \\
10 & 10 \\
-5 & 10 \\
10 & 10
\end{array}\right)\left(\begin{array}{cccc}
-10 & 10 & -10 & 10 \\
10 & 5 & 10 & 5
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & 0 & 1 / 2 \\
0 \\
0 & 1 / 2 & 0 \\
1 / 2 \\
1 / 2 & 0 & 1 / 2 \\
0 & 1 / 2 & 0 \\
1 / 2
\end{array}\right) \\
A A^{+}=\frac{1}{300}\left(\begin{array}{cccc}
-10 & 10 & -10 & 10 \\
10 & 5 & 10 & 5
\end{array}\right)\left(\begin{array}{cc}
-5 & 10 \\
10 & 10 \\
-5 & 10 \\
10 & 10
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \\
\left(C_{01}(A)=\mathbb{R}^{2} \Rightarrow \text { projection } 13 I_{2}\right.
\end{array}\right) .
$$

Now we can compute exactly what $A^{+} b$ is:
Prop: For any $b \in \mathbb{R}^{m}, \hat{x}=A^{+} b$ is the shortest least-squares solution of $A x=b$.
Proof: Fist note $A \hat{x}=A A^{+} b=$ projection of b onto $C \mid(A)$
$\Rightarrow \hat{x}=A^{+} b$ solves $A \bar{x}=b_{\text {col }}(A)$
$\Rightarrow \hat{x}$ a a least-syuares solution of $A x=b$.
Note $\hat{x}=\frac{1}{\sigma_{1}} v_{1} u_{1}^{\top} b+\cdots+\frac{1}{\sigma_{r}} v_{1} u_{r}^{\top} b$

$$
\begin{align*}
& =\frac{1}{o_{1}}\left(n_{i} b\right) v_{1}+\cdots+\frac{1}{o_{r}}\left(u_{r} \cdot b\right) v_{r} \\
& \in S_{p_{0} a_{n}}\left\{v_{1}, \ldots, r_{r}\right\}=\operatorname{Row}_{0 w}(A) . \tag{x}
\end{align*}
$$

Any other solution \hat{x}^{\prime} has the form $\hat{x}^{\prime}=\hat{x}+y$ for $y \in \operatorname{Nal}(A)$.
(the least-squares solutions are the solutions of $A_{\hat{x}}=b_{\text {ca }(A) \text {. }}$.
Note $y \in \operatorname{Rav}(A)^{\perp} \Rightarrow \hat{x} y=0$.

$$
\begin{aligned}
& \left\|x^{\prime}\right\|^{2}=\|\hat{x}+y\|^{2}=(\hat{x}+y) \cdot(\bar{x}+y)=\hat{x} \cdot \hat{x}+2 x \cdot y+y \cdot y \\
& \Rightarrow\left\|x^{\prime}\right\|^{2}=\|\hat{x}+y\|^{2}=\|\hat{x}\|^{2}+\|y\|^{2} \geqslant\|\hat{x}\|^{2} \\
& \Rightarrow \hat{x} \text { i the shortest. }
\end{aligned}
$$

$$
\text { Dy: } \begin{aligned}
& A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=2 \cdot \frac{1}{\sqrt{2}}\binom{1}{1} \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right) \\
& A^{+}=\frac{1}{2} \cdot \frac{1}{\sqrt{2}}\binom{1}{1} \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right)=\frac{1}{4}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

The shortest least-squares Solution of $A_{x}=b=\binom{3}{1}$

$$
\text { is } \hat{x}=A^{+} b=\frac{1}{4}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{3}{1}=\binom{1}{1} \text {. }
$$

All other least -squares solutions differ by $\operatorname{Nal}(A)=\operatorname{San}\left\{\binom{-1}{-1}\right\}$.

