The Singular Value Decomposition
This is the capstone of the class.
It's a fundamental application of linear algebra to:

- Statistics (PCA) - Engineering
- Data Science
- etc.

Today well discuss the outer product form and the mechanics (plumbing?) of the SVD.

Introduction to the SVD The (SUD, outer product fomi):

Let A be an $m \times n$ matrix of rank r. Then

$$
A=\sigma_{1} u_{1} v_{1}^{\dagger}+\sigma_{2} u_{2} v_{2}^{\top}+\cdots+\sigma_{c} u_{r} v_{s}^{\top}
$$

where

- $\sigma_{1} \geq \sigma_{2} \geq \cdots \geqslant \sigma_{r}>0$
- $\left\{u_{1}, \ldots, u_{0}\right\}$ is an orthonormal set in \mathbb{R}^{m}
- $\left\{v_{1}, \ldots, v_{r}\right\}$ is an orthonormal set in \mathbb{R}^{n}.

What does this mean?
Idea: columns of A are data points,
Here's an informal description of what SVD says.
$r=1$: let $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{n}$ be nonzero vectors.

This is an man matrix of rank 1: $\operatorname{Col}\left(u v^{\top}\right)=\operatorname{San}\{u\}$
Let's plot the columns ("data paints)

$$
\binom{3}{2}\left(\begin{array}{lllll}
-1 & 2 & 1 & 3 & -2
\end{array}\right)
$$

Upshot A rank-1 matrix encodes data points (columns) that lie on a line $(\operatorname{dim} \operatorname{Col}(A)=1)$. The SVD tells you which line \& which multiples.
$r=2:$

$$
\begin{aligned}
& A=u_{1} v_{1}^{T}+u_{2}^{\text {vectors }} v_{2}^{r}=\left(\begin{array}{cc}
v_{1}^{\prime} u_{1} & \cdots \\
v_{1} u_{1}^{\prime} u_{1}
\end{array}\right)+\left(\begin{array}{ccc}
v_{2} u_{2} & \cdots & v_{2 n}^{\prime} u_{2}
\end{array}\right) \\
& =\left(\begin{array}{ccc}
v_{11} u_{1}+v_{2} u_{2} & \cdots & v_{m} u_{1}+v_{2 m} u_{2} \\
1 & & 1
\end{array}\right)
\end{aligned}
$$

The columns are linear combinations of $u_{1} \& u_{2}$.
Let's pot the columns ("data pants)":

$$
\begin{aligned}
& v_{1}=\text { weight of (}\left(\frac{1}{2}\right) \\
& \binom{3}{2}\left(\begin{array}{lllll}
-1 & 2 & 1 & 3^{c} & -2
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& u_{2} \quad v_{2}=\text { weights of }\left(-\frac{2}{3}\right)
\end{aligned}
$$

Upshot: A rank-2 matrix encodes data points that lie on a plane $\left(\operatorname{dim} C_{0}(A)=2\right)$. The SVD gives you a basis $\left\{u_{1}, u_{2}\right\}$ and the weights for each column.

But: $\left\|\binom{3}{2}\right\|>\left\|\binom{-2}{-.3}\right\|$ so the $\binom{-2}{-.3}$ direction is less important!

$$
\binom{3}{2}\left(\begin{array}{lllll}
-1 & 2 & 1 & 3 & -2
\end{array}\right)+\binom{-2}{-.3}\left(\begin{array}{lllll}
3 & 1 & 2 & -1 & 0
\end{array}\right)
$$

$\approx\binom{3}{2}\left(\begin{array}{lllll}-1 & 2 & 1 & 3 & -2\end{array}\right) \quad\left(\begin{array}{ll}\text { to one decimal place) }\end{array}\right.$

We've extracted important information:
our data points almost lie on a line!
In general, the SVD will find the best-fit lime, plane, 3 -space, ., r-space for our data, all at once, and tell you how good is the fit in the sense of orthogonal least squares!
(more on this later)

Why might we care?

- Data compression: $u v^{\top}$ is 7 numbers instead of 10 for a 2×5 matrix.
- Data analysis: SVD will reveal all approximate linear relations among our data points.
- Dimension reductions if our data in $\mathbb{R}^{1000000}$ almost lie on a 1000-dimensional subspace then computers are happier to do the computations.
- Statistics: SVD fords more \& less important correlations etc.

Mechanics of the SVD
Back to the statement of the SVD:

$$
A=\sigma_{1} u_{1} v_{1}^{\dagger}+\sigma_{2} u_{2} v_{2}^{\top}+\cdots+\sigma_{r} u_{r} v_{s}^{\top} \quad r=\operatorname{rank}(A)
$$

where

- $\sigma_{1} \geqslant \sigma_{2} \geq \cdots \geqslant \sigma_{r}>0$
- $\left\{u_{1}, \ldots, u_{c}\right\}$ is an orthonomal set in \mathbb{R}^{m}
- $\left.\left\{v_{b}, \ldots, v\right)\right\}$ is an orthonormal set in \mathbb{R}^{n}.

Def: $\cdot \sigma_{1}, \ldots, \sigma_{r}$ are the singular values of A

- $u_{1} \ldots u_{r}$ are the left singular vectors
- $V_{1, \ldots} V_{r}$ are the right singular vectors

Here are some formal consequences of the statement.
Note 1: For any rector $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
A_{x} & =\left(\sigma_{1} u_{1} v_{1}^{\top}+\cdots+\sigma_{r} u_{r} v_{r}^{\top}\right) x=\sigma_{1} u_{1} v_{1}^{\top} x+\cdots+\sigma_{r} u_{r} v_{r}^{\top} x \\
& =\sigma_{1}\left(v_{1} \cdot x\right) u_{1}+\cdots+\sigma_{r}\left(v_{r} \cdot x\right) u_{r}
\end{aligned}
$$

$$
A_{x}=\sigma_{1}\left(v_{1} \cdot x\right) u_{1}+\cdots+\sigma_{r}\left(v_{r} \cdot x\right) u_{r}
$$

Note 2: Taking $x=v_{i}$, we have

$$
\begin{aligned}
& \text { e 2: laving } x=v_{i} \text {, we have } \\
& A v_{i}=\sigma_{i}\left(v_{i} \cdot v_{i}\right) u_{1}+\cdots+\sigma_{i}\left(v_{i} \cdot v_{i}\right) u_{i}+\cdots+\sigma_{r}\left(v_{r} \cdot v_{i}\right) u_{r}=0
\end{aligned}
$$ (recall $\left\{u_{1}, \ldots, u_{r}\right\}$ and $\left.\delta_{v_{y}} \ldots, v_{r}\right\}$ are orthonormal).

So the singular vectors are related by
$A v_{i}=a_{i} u_{i}$ and thus $\left\|A v_{i}\right\|=\sigma_{i}$
Note 3: Take transposes:

$$
A^{\top}=\left(\sigma_{1} u_{1} v_{1}^{\top}+\cdots+\sigma_{r} u_{r} v_{r}^{T}\right)^{\top}=\sigma_{1} v_{1} u_{1}^{\top}+\cdots+\sigma_{r} v_{r} u_{r}^{\top}
$$

Therefore, $A^{\top}=\sigma_{1} v_{1} u_{1}^{\top}+\cdots+\sigma_{r} v_{r} u_{r}^{\top}$
is the SVD of A^{\top} !
So $A \& A^{\top}$ have the same

- singular values and
- singular vectors (switch right \& left).

Note 4: Nate $2+$ Note $3 \Rightarrow A^{\top} u_{i}=\sigma_{i} v_{i}$ so

$$
\begin{array}{ll}
A^{\top} A r_{i}=A^{\top}\left(\sigma_{i} u_{i}\right)=\sigma_{i} A^{\top} u_{i}=\sigma_{i}^{2} v_{i} & A^{\top} A v_{i}=\sigma_{i}^{2} v_{i} \\
A A^{\top} u_{i}=A\left(\sigma_{i} r_{i}\right)=\sigma_{i} A v_{i}=\sigma_{i}^{2} u_{i} & A A^{\top} u_{i}=\sigma_{i}^{2} u_{i}
\end{array}
$$

In particular
$\left\{v_{1}, \ldots, v_{1}\right\}$ are orthonormal eigenvectors of $A^{T} A$ with eigenvalues $a_{i}^{2} \ldots \sigma_{r}^{2}$.
$\left\{u_{1}>u_{0}\right\}$ are orthonormal eigenvectors of $A A^{\top}$ with eigenvalues $a_{i}^{2}, \ldots \sigma_{r}^{2}$.

This tells us has to prove/compute the SUD: orthogonally diagonalize $A^{\top} A$
Proof o rn pay attention to steps 1-3: they Let $\lambda_{1} \geq \cdots \geqslant \lambda_{n} \geqslant 0$ be the eigenvalues of $A^{\top} A$ (the λ_{i} 's show up multiple tomes if $A M \geqslant 1$) Note $\lambda_{n}=0$ because $A^{T} A$ is positive-semidefrite.

Step 1: I claim $\lambda_{r+1}=\cdots=\lambda_{n}=0$.

- $\operatorname{Nal}\left(A^{\top} A\right)=\operatorname{Nal}(A)$ has dimension $n-r$.
- $\operatorname{Nul}\left(A^{\top} A\right)=$ the O-cigenspace of $A^{\top} A$.
- $A M(0)=G M(0)$ in $A^{\top} A$
because $A^{\top} A$ is symmetric \Rightarrow diagonalizable
So $n-n$ of the λ i's are $=0$

$$
\Rightarrow \lambda_{r+1}=\cdots=\lambda_{n}=0
$$

Now: $\lambda_{1} \geq \cdots \geq \lambda_{n} \geqslant 0$ are the nonzero eigenvalues of $A^{\top} A$.
Set:

$$
\cdot \sigma_{1}=\sqrt{\lambda}_{1}, \ldots, \sigma_{5}=\sqrt{\lambda_{r}}
$$

- Let v_{1}, \ldots, V_{r} be orthonormal eigenvectors with $A^{\top} A v_{i}=\lambda_{i} v_{i} . \leftarrow$
- Let $u_{1}=\frac{1}{\sigma_{1}} A v_{1}, \ldots, u_{r}=\frac{1}{\sigma_{r}} A v_{r}$

Step 2: I claim $\left\{u_{1,}, u_{r}\right\}$ is orthonorinal. Check:

$$
\begin{aligned}
u_{i} \cdot u_{j} & =u_{i}^{\top} u_{j}=\left(\frac{1}{\sigma_{i}} A v_{i}\right)^{\top}\left(\frac{1}{\sigma_{j}} A v_{j}\right)=\frac{1}{\sigma \cdot \sigma_{j}}\left(A v_{i}\right)^{\top}\left(A v_{j}\right) \\
& =\frac{1}{\sigma \sigma_{j}}\left(v_{i}^{\top} A^{\top} A v_{j}\right)=\frac{1}{\sigma \cdot \sigma_{j}} v_{i}^{\top}\left(A^{\top} A v_{j}\right)=\frac{1}{\sigma \sigma_{j}} v_{i}^{\top}\left(\lambda_{j} v_{j}\right) \\
& =\frac{\sigma_{j}^{2}}{\sigma \sigma_{j}} v_{i}^{\top} v_{j}=\frac{\sigma_{j}}{\sigma_{i}} v_{i} \cdot v_{j}
\end{aligned}
$$

Since $\left\{v_{y, \ldots}, v_{r}\right\}$ is orthonormal:

- If $i=j$ this $B u_{i} u_{i}=\frac{\sigma_{i}}{o_{i}}=v_{i} v_{i}=\left\|v_{i}\right\|^{2}=1$
- If if this is $\frac{\sigma_{j}}{\sigma_{i}} r_{i} \cdot v_{j}=0$

Step 3: I claim $\left\{v_{1}, \ldots, v_{r}\right\}$ is a basis for $\operatorname{Raw}(A)$.

- $\left.\left.v_{i}=\frac{1}{\lambda_{i}} A A^{\top} A v_{i}=A^{\top}\left(\frac{1}{\lambda_{i}} A v_{i}\right) \in \operatorname{Col}_{0}\left(A^{\top}\right)=\operatorname{Row} \right\rvert\, A\right)$
- $\operatorname{dim} \operatorname{Row}(A)=r$ and $\left\{v_{1}, \ldots, v_{r}\right\}$ is orthonormal \Rightarrow lInearly independent
So the Buss Theorem $\Rightarrow \operatorname{Rou}(A)=\operatorname{San}\left\{v_{1}, \ldots, v_{r}\right\}$
Step 4: Verify $A=\sigma_{1} u_{1} v_{1}^{\dagger}+\sigma_{1} u_{2} v_{2}^{\top}+\cdots+\sigma_{r} u_{r} v_{1}^{\top}$.
Let $B=\sigma_{1} u_{1} v_{1}^{\top}+\sigma_{2} u_{2} v_{2}^{\top}+\cdots+\sigma_{r} u v_{r} v_{r}^{\top}$, so we want to show $A \geq B$.
Recall $A=B$ if $A_{x}=B_{x}$ for all $x \in \mathbb{R}^{n}$?
As above,

$$
\begin{aligned}
B_{x} & =\sigma_{i}\left(v_{i} \cdot x\right) u_{1}+\cdots+\sigma_{r}\left(v_{i} \cdot x\right) u_{r} . \\
B v_{i} & =\sigma_{i}\left(v_{1} \cdot v_{i}\right) u_{1}+\cdots+\sigma_{i}\left(v_{i} v_{i}\right) u_{i}+\cdots+\sigma\left(v_{i} \cdot v_{i}\right) u_{i} \\
& =\sigma_{i} u_{i}
\end{aligned}
$$

(1) If $x \in N_{a}(A)$ then $A x=0$ and

$$
B_{x}=\sigma_{1}\left(v_{i} \cdot x\right) u_{1}+\cdots+\sigma_{r}\left(v_{r}-x\right)^{=0} u_{r}=0=A x
$$

because $v_{0} \ldots, v_{r} \in \operatorname{Row}_{0}(A)=\operatorname{NuI}(A)^{\perp}$
(2) If $x \in \operatorname{Row}(A)$ then we can solve $x=x_{1} v_{r}+\cdots+x_{r} v_{r}$ by Step 3. Then

$$
A x=A\left(x_{1} v_{1}+\cdots+x_{r} v_{r}\right)=x_{1} A v_{1}+\cdots+x A v_{r}
$$

$$
\left(v_{v_{i}}=\frac{1}{a_{1}} A v_{i}\right)=x_{1} \sigma_{1} u_{1}+\cdots+x_{1} \sigma_{r} u_{r}
$$

$$
\begin{aligned}
B_{x} & =\mathbb{B}\left(x_{1} v_{1}+\cdots+x_{r} v_{r}\right)=x_{1} B v_{1}+\cdots+x b v_{r} \\
\left(B_{v_{i}}=\sigma_{i} u_{1}\right) & =x_{0} u_{1}+\cdots+x_{\sigma_{r}} u_{r}=A_{x}
\end{aligned}
$$

(3) Any $x \in \mathbb{R}^{n}$ has an orthogonal decomposition

$$
\begin{array}{rl}
x= & x_{v}+x_{v 2} \quad x_{v} \in \operatorname{Row}(A) \quad x_{v t} \in N_{u l}(A) \\
\Rightarrow A x & A\left(x_{v}+x_{v s}\right)=A x_{v}+A x_{v t} \\
& (1,2) \\
=B x_{v}+B x_{v 2} & =B\left(x_{v}+x_{v t}\right)=B x
\end{array}
$$

$N B: A^{\top} A$ and $A A^{\top}$ have the same nonzero eigenvalues $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$. Le shoved in the proof that the other eigenvalues are $=0$.)
\rightarrow What about the O eigenvalue?
\rightarrow What if $A B$ a tall matrix with FCR?
$N B$: We showed in the proof that $\left\{v_{1} \ldots, v_{r}\right\}$ is a basis for $\operatorname{Row}(A)$.
Replace A by $A^{\top} \leadsto$
$\left\{u_{1}, \ldots, u-\right\}$ is a basis for $R_{w}\left(A^{+}\right)=\operatorname{Col}(A)$.

Mechanics of the SVD: Summary A : an man matrix of rank r STD: $A=\sigma_{1} u_{1} v_{1}^{\top}+\sigma_{2} u_{2} v_{2}^{\top}+\cdots+\sigma_{r} u_{r} v_{r}^{\top}$

$$
A x=\sigma_{1}\left(v_{1} \cdot x\right) u_{1}+\cdots+\sigma_{r}\left(v_{r} \cdot x\right) u_{r}
$$

$\sigma_{1} \geq \cdots \geq \sigma_{r}>0$. singular values
$\sigma_{1}^{2} \geq \cdots \geq \sigma_{r}^{2}$: nonzero eigenvalues of $A^{\top} A$ and $A A^{+}$
$\left\{u_{3} \ldots, u_{r}\right\}$: - left singular vectors

- orthonormal eigenvectors of $A A^{\top}$

$$
A A^{\top} u_{i}=\sigma_{i}^{2} u_{i}
$$

- orthonormal basis for $\operatorname{Col}(A)$
$\left\{v_{c} \ldots, v_{r}\right\}:$ - right singular vectors
- orthonormal eigenvectors of $A^{\top} A$

$$
A^{\top} A V_{i}=o_{i}^{2} V_{i}
$$

- orthonormal basis for Row (A)

$$
A v_{i}=a_{i} u_{i} \Rightarrow\left\|A v_{i}\right\|=\sigma_{i}
$$

$$
\begin{aligned}
& \text { SUD: } A^{\top}=\sigma_{i} v_{i} u_{i}^{\top}+\cdots+\sigma_{r} v_{r} u_{r}^{\top} \\
& A^{\top} u_{i}=\sigma_{i} r_{1} \Rightarrow\left\|A^{\top} u_{i}\right\|=o_{i}
\end{aligned}
$$

This also gives us a procedure to compute the SVD.
It is not the algorithm used in practice!
\rightarrow Efficient computation of the SVD is a difficult problem!

Naive Schoolbook Procedure to Compute the SVD:
Let A be an $m \times n$ matrix of rank r.
(1) Compute the nonzero eigenvalues of $A^{\top} A$,

$$
\lambda_{1} \geq \lambda_{2} \geq \cdots \geqslant \lambda_{r}>0
$$

(where $\lambda_{\text {: }}$ appears multiple times if $A M>1$)
\rightarrow There are automatically r of them, and they're positive.
(2) Find an orthonomal eigenbasis for each eigenspace: get an orthonormal set $\left\{v_{1}, \ldots, v_{5}\right\}$ with $A^{\top} A v_{i}=\lambda_{i} v_{i}$,
(3) Set $\sigma_{i}=\sqrt{\lambda_{i}} \quad u_{i}=\frac{1}{\sigma_{i}} A v_{i}$.

Then $\left\{u_{1},, u_{r}\right\}$ is orthonomal and

$$
A=\sigma_{1} u_{1} v_{1}^{\top}+\sigma_{2} u_{2} v_{2}^{\top}+\cdots+\sigma_{r} u r v_{r}^{\top} .
$$

$N B:$ It may be easier to compute $S V D$ of A^{\top} ?
if A is wide: $m<n, A^{\top} A$ is $n \times n$ but $A A^{\top}$ is $m \times m$)

Eg: $A=\left(\begin{array}{ll}3 & 0 \\ 4 & 5\end{array}\right) \quad N B: r=2 \quad(2$ pivots)
(1)

$$
\begin{aligned}
& A^{\top} A=\left(\begin{array}{ll}
25 & 20 \\
20 & 25
\end{array}\right) \quad p(\lambda)=\lambda^{2}-50 \lambda+225 \\
&=(\lambda-45)(\lambda-5) \\
& \lambda_{1}=45 \quad \lambda_{2}=5
\end{aligned}
$$

(2) Compute eigenspaces:

$$
\begin{aligned}
& A^{\top} A-45 I_{2}=\left(\begin{array}{cc}
-20 & 20 \\
- & -
\end{array}\right) \xrightarrow{\text { trick }} v_{1}=\frac{1}{\sqrt{2}}\binom{1}{1} \\
& A^{\top} A-5 I_{2}=\left(\begin{array}{cc}
20 & 20 \\
- & -
\end{array}\right) \leadsto v_{2}=\frac{1}{\sqrt{2}}\binom{1}{-1}
\end{aligned}
$$

(3)

$$
\begin{aligned}
& \sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{45}=3 \sqrt{5} \quad \sigma_{2}=\sqrt{\lambda_{2}}=\sqrt{5} \\
& u_{1}=\frac{1}{\sigma_{1}} A v_{1}=\frac{1}{3 \sqrt{5}}\left(\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{1}=\frac{1}{3 \sqrt{10}}\binom{3}{9}=\frac{1}{\sqrt{10}}\binom{1}{3} \\
& u_{2}=\frac{1}{\sigma_{2}} A v_{2}=\frac{1}{\sqrt{5}}\left(\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right) \frac{1}{\sqrt{2}}\binom{1}{-1}=\frac{1}{\sqrt{10}}\binom{3}{-1}
\end{aligned}
$$

SVD:

$$
\left(\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right)=3 \sqrt{5} \cdot \frac{1}{\sqrt{10}}\binom{1}{3} \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & 1
\end{array}\right)+\sqrt{5} \cdot \frac{1}{\sqrt{10}}\binom{3}{-1} \cdot \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & -1
\end{array}\right)
$$

Check: $\left\|u_{1}\right\|=\frac{1}{\sqrt{10}} \sqrt{1^{2}+3^{2}}=1 \quad\left\|u_{2}\right\|=\frac{1}{\sqrt{10}} \sqrt{3^{2}+(-1)^{2}}=1$

$$
u_{1} \cdot u_{2}=0
$$

