Quadratic Optimization: Variant
Last time: we discussed finding the extremal (min \& max values of a quadratic form

$$
q(x)=\sum a_{i j} x: x_{j}
$$

subject to the constraint $l=\|x\|^{2}=x_{1}^{2}+\cdots+x_{n}^{2}$.
Procedure: $q(x)=x^{\top} S x$ for S symmetric
orthogonally dregonatize: $S=Q D Q^{\top} \quad D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{n}\end{array}\right)$ change variables: $x=Q_{y}$

$$
\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}
$$

$$
\Rightarrow q(x)=\lambda y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

Answer:
maximum $=\lambda_{1}$, achieved at any unit λ_{1}-eigenvector
maximum $=\lambda_{n}$, achieved at any unit λ_{n}-eigenvector
Here's an (almost) equivalent variant of this problem that you can draw.
Quadratic Optimization Problem, Variant:
Given a quadratic form $q(x)$, find the minimum \& maximum values of $\|x\|^{2}$ subject to $q(x)=1$.
So we switched the function were extromizing $\left(\|x\|^{2}\right)$ and the constraint $(q(x)=1)$.

How to draw this problem?
$q(x)=1$: this is a level set of the function $q(x)$
Extremizing $\|x\|^{2}$ just means finding the shortest \& longest vectors on this level set.

Bad Eg: $q\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{2}^{2}=1$ defines a hyperbola
\rightarrow Shortest vectors are
$(1,0)$ and $(-1,0)$
So the minimum value of $\|x\|^{2}$ B $\| \pm(1,0)\|^{2}=1$.
\rightarrow There is no maximum $\|x\|^{2}$ subject to $g(x)=1$: there are arbitrarily long vectors on the
 hyperbda.

Good Eg: An equation of the form major $\left(0, \frac{1}{\lambda_{2}}\right)$

$$
\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}=1 \quad\left(\lambda_{1} \geq \lambda_{2}>0\right)
$$ defines an ellipse.

(This is a circle horizontally stretched
 by $1 / \lambda_{1} \&$ vertically stretched by $1 / \sqrt{\lambda}_{2}$)

If $\lambda \geqslant \lambda_{2}$ then $\frac{1}{\lambda_{1}} \leq \frac{1}{\lambda_{2}}$. The vectors $\pm \frac{1}{\sqrt{\lambda_{1}} e_{1}}=\left(\pm \frac{1}{\left.\sqrt{\lambda_{1}}, 0\right)}\right.$ and $\pm \frac{1}{\sqrt{\lambda_{2}} e_{2}}=\left(0, \pm \frac{1}{\sqrt{\lambda_{2}}}\right)$
both lie on the ellipse $\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}=1$,
$\pm \frac{1}{2}$ are the shortest
$\sqrt{\lambda_{1}} e_{1}$ vectors on the ellipse

$$
\left\|\frac{ \pm 1}{\sqrt{\lambda}} e_{1}\right\|^{2}=\frac{1}{\lambda_{1}}=\text { minimum lents }{ }^{2}
$$

$\pm \frac{1}{x}$ are the longest vectors on the ellipse

$$
\left\|\frac{ \pm 1}{\sqrt{\lambda_{2}} e_{2}}\right\|^{2}=\frac{1}{\lambda_{2}}=\text { maximum length } h^{2}
$$

In generals $q(x)=\lambda_{1} x_{1}^{2}+\cdots+\lambda_{1} x_{n}^{2} \quad$ (all $\lambda_{i}>0$) defines an ellipsoid ("egg"); extremizing $\|x\|^{2}$ subject to $q(x)=1$ means finding the shortest \& longest vectors.
$\pm \frac{1}{2}$ are the shortest
$\pm \frac{1}{\sqrt{\lambda_{1}}} e_{1}$ vectors on the ellipsoid

$$
\left\|\frac{ \pm 1}{\sqrt{\lambda}} e_{1}\right\|^{2}=\frac{1}{\lambda_{1}}=\text { minimum length }{ }^{2}
$$

$\pm \frac{1}{5 e}$ are the longest
$\pm \sqrt{\lambda_{n}} e_{n}$ vectors on the ellipsoid

What if a(x) a not diagonal?
We still reed the condition "All $\lambda_{i}>0$ "-otherwise a min or max may not exist.

Def: A quadratic form is positive-definite if $q(x)>0$ for all $x \neq 0$.
$N B$: If $q(x)=x^{\top} S x$ then
q is positive-definite $\Longleftrightarrow S$ is positive-definite
This is the positive-energy criterion.
Suppose that $\varphi(x)=x^{\top} S_{x}$ is positive-definite.
Let $\lambda_{1} \geqslant \lambda_{2}>0$ be the eigenvalues of S and u_{1}, u_{2} orthonormal eigenvectors.
Change variables: $x=Q_{y} \quad Q=\left(\begin{array}{cc}i_{1} & i_{2} \\ 1 & 1\end{array}\right)$

$$
\lambda_{1} y_{0}^{2}+\lambda_{2} y_{2}^{2}=1 \quad \Longleftrightarrow \quad q(x)=1
$$

Upshot: If q is positive-definite, then $q(x)=1$ defines a (rotated) ellipse.
The minor axis is in the u_{1}-direction.
\rightarrow The shortest vectors are $\pm \frac{1}{\lambda_{1}} u_{1}$
The major axis is in the u_{2}-direction.
\rightarrow The longest vectors are $\pm \frac{1}{\sqrt{\lambda_{2}}} u_{2}$.
Orthogonally diagonalizing $S=$ PDQ found the major \& mirror axes \& rodin!

$$
\begin{aligned}
& \text { Eg: } q\left(x_{1}, x_{2}\right)=\frac{5}{2} x_{1}^{2}+\frac{5}{2} x_{2}^{2}-x_{1} x_{2}=x^{\top} S x \\
& S=\frac{1}{2}\left(\begin{array}{cc}
5 & -1 \\
-1 & 5
\end{array}\right)=Q D Q^{\top} \quad Q=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 \\
1 & 1
\end{array}\right) \quad D=\left(\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right) \\
& x=Q y=3 y_{1}^{2}+2 y_{2}^{2} \\
& 3 y_{0}^{2}+2 y_{2}^{2}=1 \\
& q(x)=1
\end{aligned}
$$

Shortest redfers: $\pm \frac{1}{\sqrt{3}} a_{1}= \pm \frac{1}{\sqrt{6}}\binom{-1}{1} \quad$ length ${ }^{2}=1 / 3$ longest vectors: $\pm \frac{1}{\sqrt{3}} u_{2}= \pm \frac{1}{2}(!) \quad$ length ${ }^{2}=1 / 2>\frac{1}{3}$ (subbiect to $q(x)=1$)
The orthogonal dragonalization procedure took the ellipse

$$
q\left(x_{1}, x_{2}\right)=\frac{5}{2} x_{1}^{2}+\frac{5}{2} x_{2}^{2}-x_{1} x_{2}
$$

and found its major \& minor axes \& radii: the change of variables

$$
\begin{aligned}
& x=Q_{y}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\binom{y_{1}}{y_{2}} \backsim \quad \begin{array}{l}
x_{1}=\frac{1}{\sqrt{2}}\left(-y_{1}+y_{2}\right) \\
x_{2}=\frac{1}{\sqrt{2}}\left(y_{1}+y_{2}\right)
\end{array}
\end{aligned}
$$

made $q(x)=1$ nato the standard (non-rotated) ellipse

$$
3 y_{1}^{2}+2 y_{2}^{2}=1
$$

Relationship to the original QO problem:
How is this "almost equivalent" to extremizing $q(x)$ subject to $\|+N=1$?
Recall: $q(c x)=c^{2} q(x)$

Fact: If q is positive-defnite then

Why? if $q(u)=\lambda>0$ and $x=\frac{1}{\sqrt{\lambda} u}$ then

$$
q(x)=q\left(\frac{1}{\sqrt{\lambda}} u\right)=\frac{1}{\lambda} q(u)=\frac{1}{\lambda} \cdot \frac{1}{\lambda}=1 .
$$

If λ is maximized then $\|x\|^{2}=\frac{1}{\lambda}$ is minimized and rice-versa.

So the QO variant giles us a picture of the original QO problem, at least when 9 is positive-defmie- were just finding axes \& radii of ellipsoids.

Additional Constraints
These come up naturally in practice (sse the spectral graph theory problem on the HW) and in the PCA.
"Second-largest" value:
Suppose $q(x)$ is maximized (subject to $\|x\|=1$) at u. What B the maximum value of $g(x)$ subject to $\|x\|>1$ and $x \perp u_{1}$?
This rules out the maximum values get "secondlargest" value.

How to solve this?

- Write $q(x)=x^{T} S x$
- Orthogonally diagonalize $S=Q D Q^{T}$

Suppose u_{1} is the first column of $Q()^{s t} \lambda_{1}$-eigenvec)

- Set $x=Q_{y}$

$$
\text { ur } q=\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2} \quad \lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}
$$

Answer: The maximum value of $g(x)$ subject to $\|x\|=\| x+u_{1} \quad B \lambda_{2}$. It B achieved at any unit λ_{2}-eigenvector u_{2} that is $\perp u_{1}$.
$N B:$ If $\lambda_{1}>\lambda_{2}$ then $u_{2} \perp u_{1}$ antomatically.
Why?

- If $q=\lambda, y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}$ is diagonal then $u_{1}=e_{1}=(1,0, \ldots)$ so $x+u_{1}$ means $y_{1}=0$ u extremizing $\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}+\cdots+\lambda_{n} y_{n}^{2}$.
- Otherwise, change variables $x=Q y$.
Q is orthogonal, so

$$
\begin{aligned}
& y \cdot e_{1}=0 \Longleftrightarrow 0=\left(Q_{y}\right) \cdot\left(Q_{e_{1}}\right)=x \cdot u_{1} \\
& \left\|_{y}\right\|=1 \quad 1=\left\|Q_{y}\right\|=\|x\|
\end{aligned}
$$

(relate constraints on $\times \& y$)
Eg: Find the largest and recond-largest values of

$$
q(x)=2 x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}-8 x_{1} x_{3}+8 x_{2} x_{3}
$$

subject to $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$.

- $q=x^{T} S x$ for $S=\left(\begin{array}{ccc}2 & 1 & -4 \\ 1 & 2 & 4 \\ -4 & 4 & 5\end{array}\right)$
- $S=Q D Q^{\top}$ for

$$
Q=\left(\begin{array}{ccc}
-1 / \sqrt{6} & 1 \sqrt{2} & 1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & -1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & 1 / \sqrt{3}
\end{array}\right) \quad D=\left(\begin{array}{ccc}
9 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & -3
\end{array}\right)
$$

Largest value is $q(x)=9$ at $x= \pm \frac{1}{\sqrt{6}}\left(\begin{array}{c}-1 \\ 1 \\ 2\end{array}\right)= \pm u_{1}$
Second-largest value:
The maximum value of $q(x)$ subject to $\|x\|=1 \& x \perp u_{1}$ is

$$
q(x)=3 \quad \text { achieved at } x= \pm \frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

This also works for minimizing.
Second-smallest value:
Suppose $q(x)$ is minimized (subject to $\|x\|=1$) at u_{n}.
What B the minimum value of $g(x)$ subject to

$$
\|x\|>1 \text { and } x \perp u_{n} ?
$$

Answer: The minimum value of $g(x)$ subject to $\|x\|=\| \& \operatorname{u}_{n} B \lambda_{n-1}$. It B achieved at any unit λ_{n-1}-eigenvector u_{n-1} that $i s \perp u_{n}$. (automatic 'f $\lambda_{n-r}>\lambda_{n}$)

You can keep going:
Third-largest value:
Suppose $q(x)$ B maximized (subject to $\|x\|=1$) at u, and $q(x)$ is maximized (subject to $\|x\|=1$ and $x-u_{1}$) at u_{z}.
What B the maximum value of $q(x)$ subject to $\|x\|>1$ and $x \perp u_{1}$ and $x \perp u_{2}$?
NB: This "rules out" the largest \& second-largest values.
Answer: The maximum value of $g(x)$ subject to $\|x\|=1 \& x+u_{1} \& x+u_{2}$ is λ_{3}. It B achieved at any unit λ_{3}-eigenvector u_{3} that is $\perp u_{1}$ and u_{2}. (automatic if $\lambda_{2}>\lambda_{3}$)
This also works for the variant problem, except you have to take reciprocals.
Et cefera...

Quadratic Optimization for $S=A^{\top} A$
This is what well use for PCA.
Let $S=A^{\top} A$ and $q(x)=x^{\top} S x$. Then

$$
\begin{aligned}
& q(x)=x^{\top} S x=x^{\top}\left(A^{\top} A\right) x=\left(x^{\top} A^{\top}\right)\left(A_{x}\right) \\
&=\left(A_{x}\right)^{\top}\left(A_{x}\right)=\left(A_{x}\right) \cdot\left(A_{x}\right)=\left\|A_{x}\right\|^{2} \\
& q(x)=\left\|A_{x}\right\|^{2} \text { B a quadratic form with } S=A^{\top} A
\end{aligned}
$$

In this case, extremizng $q(x)$ subject $d\|x\|=1$ means extremizing $\mid A x \|^{2}$ subject to $\|x\|=1$.
Procedure : to extremize $\left\|A_{x}\right\|^{2}$ subject to $\|x\|=1$:
Orthogonally diagonalize $S=A^{\top} A$ \leftrightarrow orthonormal eigentosis $\left\{u_{1}, \ldots, u_{n}\right\}$, eigenvalues $\lambda_{1} \geq \cdots \geqslant \lambda_{n} \geq 0-$-res ex meld wite

- The largest value is λ_{1}, achieved at any unit λ_{1} - eigenvector u_{1}.
- The smallest value is λ_{n}, achieved at any unit λ_{n}-eigenvector u_{n}.
- The second-largest value is λ_{2}, achieved at any unit λ_{2}-eigenvector $u_{2} \perp u_{1} \ldots$ etc.
$N B$: these are eigenvectors/eigenvalues of $S=A^{T} A$, not of A (which need not be square)
Def: The matrix nom of a matrix A is $\|A\|=$ the maximum value of $\left|A_{x}\right|$ subject to $\|x\|=1$.
So $\|A\|=\sqrt{x_{1}} \quad \lambda_{1}=$ largest eigenvalue of $A^{\top} A$.
Eg: Compute $\|A\|$ for $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right)$.

$$
A^{\top} A=\left(\begin{array}{ll}
3 & 2 \\
2 & 3
\end{array}\right) \quad p(\lambda)=\lambda^{2}-6 \lambda+5=(\lambda-5)(\lambda-1)
$$

The largest eigenvalue is $\lambda=5$, so $\|A\|=\sqrt{5}$.
Eigenvector: $\binom{-b}{a-\lambda}=\binom{-2}{-2}$
Unit eigenvector: $u_{1}=\frac{1}{\sqrt{2^{2}+2}}\binom{-2}{-2}=\frac{1}{2 \sqrt{2}}\binom{-2}{-2}=\frac{1}{\sqrt{2}}\binom{-1}{-1}$
Check $A u_{1}=\left(\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right) \cdot \frac{1}{\sqrt{2}}\binom{-1}{-1}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}-1 \\ -2 \\ 2 \\ -1\end{array}\right)$ has length $\frac{1}{\sqrt{2}} \cdot \sqrt{1^{2}+2^{2}+2^{2}+1^{2}}=\frac{\sqrt{10}}{\sqrt{2}}=\sqrt{5}$

