LD(' \& Cholesky
This amounts to an LU decomposition of a positive definite, symmetric matrix that's $2 x$ as fast to compute!

Tho: A positive-definite symmetric matrix S can be uniquely decomposed as

$$
S=L D L^{\top} \text { and } S=L_{1} L_{1}^{\top} \longleftarrow \text { Cholesky }
$$

where:
D: diagonal u/positive diagonal entries
L : lower-unitriangular
L_{1} : lower-triangular with positive diagonal entries.
Proof' [supplement]
NB: Any such L_{1} has full column ranks so $S=L_{i} L_{1}^{T}$ is necessarily positive-definite \& symmetric (last time).
$N B$: Let $U=D L^{\top}$.
(scales the rows of L^{T} by the diagonal entries of D)
Then U is upper $-\Delta$ with positive diagonal entries \Rightarrow in $R E F$, so $S=L U$ is the LU decomposition!

This tells us haw to compute an LDL ${ }^{\top}$ decomposition.

Procedure to compute $S=L D L^{T}$.
Let S be a symmetric matrix.
(1) Compute the $L U$ decomposition $S=L U$,
\rightarrow If you have to do a row swap then stop: S is not positive-definite.
\rightarrow If the diagonal entries of U are not all positive then stop: S_{B} not positive-definite.
(2) Let $D=$ the matrix of diagonal entries of U (set the off-diagonal entries $=0$). Then $S=L D L T$.
$N B$: An $L D L^{\dagger}$ decomposition can be computed in $\sim \frac{1}{3} n^{3}$ flops (as apposed to $2 / 3 n^{3}$ for LU). This requires a slightly more ever abonithm. See the supplement - its ako foster by hand!

NB: This is still an LU decomposition - lets you solve $S_{x}=b$ quickly.
$N B: S=Q D Q^{\top}$ and $S=L D L^{\top}$ we both "diagenatizations" in the sense of quadratic forms (later).

Eg: Find the LDLT decomposition of

$$
S=\left(\begin{array}{ccc}
2 & 4 & -2 \\
4 & 9 & -1 \\
-2 & -1 & 14
\end{array}\right)
$$

2-column method:
L

U

$$
\left(\begin{array}{ccc}
2 & 4 & -2 \\
4 & 9 & -1 \\
-2 & -1 & 14
\end{array}\right)
$$

$$
\begin{aligned}
& R_{2}=2 R_{1} \\
& R_{3}+=R_{1}
\end{aligned} \quad\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right)
$$

$$
\left(\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 3 \\
0 & 3 & 12
\end{array}\right)
$$

$$
R_{3}-=3 R_{2}\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 3 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{rrr}
2 & 4 & -2 \\
0 & 1 & 3 \\
0 & 0 & 3
\end{array}\right)
$$

So $S=L D L^{\top}$ for

$$
L=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 3 & 1
\end{array}\right) \quad D=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right)
$$

Check:

$$
D L^{\top}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right)\left(\begin{array}{ccc}
1 & 2 & -1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
2 & 4 & -2 \\
0 & 1 & 3 \\
0 & 0 & 3
\end{array}\right)=U
$$

Cholesky from LDL':
If S is positive-definite then $S=L D C^{\top}$ where D is diagonal with positive diagonal entries.
If $D=\left(\begin{array}{cc}d_{1} & 0 \\ 0 & d_{n}\end{array}\right)$ set $\sqrt{D}=\left(\begin{array}{ccc}\sqrt{d_{1}} & 0 \\ 0 & \cdots & \sqrt{d_{n}}\end{array}\right)$
Then $\sqrt{D} \cdot \sqrt{D}=D$ and $\sqrt{D^{T}}=\sqrt{D}$, so

$$
L D L^{\top}=L \sqrt{D} \sqrt{D} L^{\top}=(L \sqrt{D})(L \sqrt{D})^{\top}
$$

So just set

$$
L_{1}=L \sqrt{D} \leadsto S=L_{1} L_{1}^{\top}
$$

Stang:
" $S=A^{T} A$ is how a positive-definite symmetric matrix is put together.
$S=L_{1} L_{1}^{\top}$ is how you pull it apart"
$E g^{\prime}\left(\begin{array}{ccc}2 & 4 & -2 \\ 4 & 9 & -1 \\ -2 & -1 & 14\end{array}\right)=L_{1} L_{1}^{T}$ for

$$
L_{1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
-1 & 3 & 1
\end{array}\right)\left(\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
0 & \sqrt{1} & 0 \\
0 & 0 & \sqrt{3}
\end{array}\right)=\left(\begin{array}{ccc}
\sqrt{2} & 0 & 0 \\
2 \sqrt{2} & 1 & 0 \\
-\sqrt{2} & 3 & \sqrt{3}
\end{array}\right)
$$

Quadratic Optimization
This is an important application of the spectral theorem and positive-definiteness. Also, $S V D+Q O+\varepsilon$-stats $=P C A$.
If is the simplest case of quadratic programming, which is a big subfield of optimization. (So is least squares.) For an example application, see the Wikipedia page for support-vector machine, an important tool in machine learning that reduces to a quadratic optimization problem. (There are tons of other applications.)
Def: An optimization problem means finding extremal values (minimuna maximum) of a function
$f\left(x_{1}, \ldots, x_{n}\right)$ subject to some constraint on $\left(x_{1}, \ldots, x_{n}\right)$.
In quadratic optimization, we consider quadratic functions.
Def: A quadratic form in n variables is a function $q\left(x_{1}, \ldots, x_{n}\right)=$ sum of terms of the form $a_{i j} x_{i} x_{j}$
Eg: $q\left(x_{1}, x_{2}\right)=\frac{5}{2} x_{1}^{2}+\frac{5}{2} x_{2}^{2}-x_{1} x_{2}$
Norreg: $q\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}+x_{1}+x_{2}$ is not a quadratic for: x_{1}, x_{2} are linear terms.

NB: Thinking of $x=\left(x_{0}, \ldots, x_{n}\right)$ as a vector,

$$
\begin{gathered}
q(c x)=q\left(c x_{1}, \ldots,\left(x_{n}\right)=\sum a_{i j}\left(c x_{i}\right)\left(c x_{j}\right)\right. \\
=\sum c^{2} a_{i j} x_{i} x_{j}=c^{2} q(x) \\
q(c x)=c^{2} q(x)
\end{gathered}
$$

In quadratic optimization, the constraint on $x=\left(x_{1}, \ldots, x_{n}\right)$ is usually $\|x\|=1$, ie $x_{1}^{2}+\cdots+x_{n}^{2}=1$.
Quadratic Optimization Problem:
Given a quadratic form $q(x)$, find the minimum \& maximum values of $q(x)$ subject to $\|x\|=1$.

Eg: $q\left(x_{1}, x_{2}\right)=3 x_{1}^{2}-2 x_{2}^{2}$
Maximum:

$$
\begin{aligned}
q\left(x_{1}, x_{2}\right) & =3 x_{1}^{2}-2 x_{2}^{2} \leq 3 x_{1}^{2}+3 x_{2}^{2} \\
& =3\left(x_{1}^{2}+x_{2}^{2}\right)=3\|x\|^{2}=3
\end{aligned}
$$

So the maximum value is 3 ; it is achieved at $\left(x_{1}, x_{2}\right)= \pm(1,0): q(\pm 1,0)=3$.

Minimum:

$$
\begin{aligned}
q\left(x_{1} x_{2}\right) & =3 x_{1}^{2}-2 x_{2}^{2} \geqslant-2 x_{1}^{2}-2 x_{2}^{2} \\
& =-2\left(x_{1}^{2}+x_{2}^{2}\right)=-2\|x\|^{2}=-2
\end{aligned}
$$

So the minimum value is -2 ; it achieved at $\left(x_{1}, x_{2}\right)= \pm(0,1): q(0, \pm 1)=-2$.
This example is easy because $q\left(x_{1} x_{2}\right)=3 x_{1}^{2}-2 x_{2}^{2}$ involves only squares of the coordinates: there is no cross-tem $x_{1} x_{2}$

Def: A quadratic form is diagonal if it has the form $q\left(x_{1}, \ldots, x_{n}\right)=$ sum of terms of the form $\lambda_{i} x_{i}^{2}$.

Terms of the for $a_{i j} x_{i} x_{\mathrm{y}}$ (iii) are cross-tems.
Quadrate Optimization of Diagonal Forms:
Let $q(x)=\sum_{1} \lambda_{i} x_{i}^{2}$. Order the x_{i} so that $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$. Then

- The maximum value of $q(x)$ is λ_{1}.
- The minimum value of $q(x)$ is λ_{n}. (subject to $\|N\|=1$).
$N B$ the λ_{i} could be negative.

Strategy: To solve a quadratic optimization problem, we want to diagonalize it to get rid of the coss terms.
To do this, we use symmetric matrices!
Fact: Every quadratic form can be written

$$
q(x)=x^{\top} S x
$$

for a symmetric matrix S.

$$
\begin{aligned}
\text { Eg: } S= & \left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right) \\
w x^{\top} S x= & \left(x_{1} x_{2} x_{3}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \\
= & \left(x_{1} x_{2} x_{3}\right)\left(\begin{array}{l}
x_{1}+2 x_{2}+3 x_{3} \\
2 x_{1}+4 x_{2}+5 x_{3} \\
3 x_{1}+5 x_{2}+6 x_{3}
\end{array}\right) \\
= & x_{1}^{2}+2 x_{1} x_{2}+3 x_{1} x_{3} \\
& +2 x_{2} x_{1}+4 x_{2}^{2}+5 x_{1} x_{3} \\
& +3 x_{3} x_{1}+5 x_{3} x_{2}+6 x_{3}^{2} \\
= & x_{1}^{2}+4 x_{2}^{2}+6 x_{3}^{2}+4 x_{1} x_{2}+6 x_{1} x_{3}+10 x_{2} x_{3}
\end{aligned}
$$

NB: The $(1,2)$ and $(2,1)$ entries contribute to the $x_{1} x_{2}$ coefficient.

Given q, how to get S ?
The x_{i}^{2} coefficients g^{0} on the diagonal y and half of the $x i x_{j}$ coefficient goes in the (i,j) and (j, i) entries.

$$
\begin{aligned}
q\left(x_{1}, x_{2}, x_{3}\right)=a_{11} x_{1}^{2} & +a_{22} x_{2}^{2}+a_{33} x_{3}^{2} \\
& +a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+a_{23} x_{2} x_{3} \\
\leadsto S= & \left(\begin{array}{lll}
a_{11} & a_{12} / 2 & a_{13} / 2 \\
a_{12} / 2 & a_{22} & a_{23} / 2 \\
a_{13} / 2 & a_{23} / 2 & a_{33}
\end{array}\right)
\end{aligned}
$$

$N B=9$ is diagonal $\Leftrightarrow S_{\text {is diagonal: the } a_{i j}}$ are the coefficients of the cross-terus.

$$
x^{\top}\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
& 0 & \lambda_{n}
\end{array}\right) x=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2}+\cdots+\lambda_{n} x_{n}^{2}
$$

How does three help quadratic optimization?
Orthogonally diagonalize!

$$
q(x)=x^{\top} S x
$$

Find a diagonal matrix D and orthogonal matrix Q such that $S=Q D Q^{\top}$

$$
\sim q(x)=x^{\top} Q D Q^{\top} x
$$

Let $x=Q_{y}$: this is a change of variables

$$
\begin{aligned}
q(x)=q\left(Q_{y}\right) & =\left(Q_{y}\right)^{\top} Q^{\top} Q^{\top}\left(Q_{y}\right) \\
& =y^{\top} \alpha^{\top} Q^{\top} D Q^{\top} Q_{y}^{\Sigma_{y}}=y^{\top} D y
\end{aligned}
$$

This is now diagonal!
$N B: Q$ is orthogonal $\Rightarrow\|x\|=\left\|Q_{y}\right\|=\|y\|$

$$
\text { So }\|x\|=1 \Longleftrightarrow\|y\|=1
$$

Eg: Find the minimum \& maximum of

$$
q\left(x_{1}, x_{2}\right)=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}-5 x_{1} x_{2} \subseteq \overbrace{}^{\cos s} \operatorname{tem}
$$

subject to $\|x\|=1$.

$$
q(x)=x^{\top}\left(\begin{array}{cc}
1 / 2 & -5 / 2 \\
-5 / 2 & 1 / 2
\end{array}\right) x \rightarrow S=\frac{1}{2}\left(\begin{array}{cc}
1 & -5 \\
-5 & 1
\end{array}\right)
$$

Orthogonally diagonalize: $S=Q D Q^{\top}$ for

$$
Q=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right) \quad D=\left(\begin{array}{cc}
3 & 0 \\
0 & -2
\end{array}\right)
$$

Set $x=Q_{y}$:

$$
\begin{aligned}
& \binom{x_{1}}{x_{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\binom{y_{1}}{y_{2}}=\frac{1}{\sqrt{2}}\binom{-y_{1}+y_{2}}{y_{1}+y_{2}} \\
& \left\{\begin{array}{l}
x_{1}=\frac{1}{\sqrt{2}}\left(-y_{1}+y_{2}\right) \\
x_{2}=\frac{1}{\sqrt{2}}\left(y_{1}+y_{2}\right)
\end{array}\right. \text { is a linear change }
\end{aligned}
$$

Then $q(x)=y^{\top}\left(\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right) y=3 y_{1}^{2}-2 y_{2}^{2}$.

Check,

$$
\begin{aligned}
q(x) & =q\left(\frac{1}{\sqrt{2}}\left(-y_{1}+y_{2}\right), \frac{1}{\sqrt{2}}\left(y_{1}+y_{2}\right)\right) \\
= & \frac{1}{2}-\frac{1}{2}\left(-y_{1}+y_{2}\right)^{2}+\frac{1}{2} \cdot \frac{1}{2}\left(y_{1}+y_{2}\right)^{2}-5 \frac{1}{2}\left(-y_{1}+y_{2}\right)\left(y_{1}+y_{2}\right) \\
= & \frac{1}{4} y_{1}^{2}+\frac{1}{4} y_{2}^{2}-\frac{1}{2} y_{1} y_{2}+\frac{1}{4} y_{1}^{2}+\frac{1}{4} y_{2}^{2}+\frac{1}{2}-y_{1} y_{2} \\
& +\frac{5}{2} y_{1}^{2}-\frac{5}{2} y_{2}^{2} \\
= & \left(\frac{1}{4}+\frac{1}{4}+\frac{5}{2}\right) y_{1}^{2}+\left(\frac{1}{4}+\frac{1}{4}-\frac{5}{2}\right) y_{2}^{2}=3 y_{1}^{2}-2 y_{2}^{2}
\end{aligned}
$$

The maximum value of 9 subject to $\|x\|=\|y\|=1$ is 3, achieved at

$$
y=(\pm 1,0) \leadsto x=Q_{y}= \pm \frac{1}{\sqrt{2}}\binom{-1}{1}
$$

The minimum value of 9 subject to $\|x\|=\|y\|=1$ is -2 , achieved at

$$
y=(0, \pm 1) \leadsto x=Q_{y}= \pm \frac{1}{\sqrt{2}}\binom{1}{1}
$$

NB: The minimum value is the smallest diagonal entry of $D \leadsto$ smallest eigenvalue.
$Q\binom{ \pm 1}{0}$ is the forest column of Q
\rightarrow is a unit eigenvector for that eigenvalue.
Likewise for the largest eigenvalue.

Quadratic Optimization:
To find the minimum/maximum of a quadratic form $q(x)$ subject to $\|x\|=1$:
(1) Write $q(x)=x^{\top} S x$ for a symmetric matrix S
(2) Orthogonally diagonalize $S=Q D Q^{\top}$ for

$$
Q=\underbrace{\left(\begin{array}{cc}
1 & 1 \\
u_{1} & \ldots \\
1 & u_{n}
\end{array}\right)}_{\text {eigenvectors }} \quad D=\underbrace{\left.\begin{array}{ccc}
\lambda_{1} & 0 \\
0 & - & \lambda_{n} \\
0 & & \lambda_{n}
\end{array}\right)}_{\text {eigenvalues }}
$$

Order the eigenvalues so $\lambda_{1} \geqslant \cdots \geqslant \lambda_{n}$
(3) The maximum value of $q(x)$ is the largest eigenvalue λ_{1}.
It is achieved for $x=$ any unit λ_{1}-eigenvector
The minimum value of $g(x)$ is the smallest eigenvalue λ_{n}.
It is achieved for $x=$ any unit λ_{n}-eigenvector.
$N B$: If $G M\left(\lambda_{i}\right)=1$ then the only unit λ_{i}-eigenvectors are $\pm u_{i}$. (only 2 unit vectors are on any line)
$N B: x=Q_{y}$ diagonalizes q

$$
g(x)=\lambda_{1} y_{r}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

