LDLᵀ & Cholesky

This amounts to an LU decomposition of a positive-definite, symmetric matrix that’s 2x as fast to compute!

Thm: A positive-definite symmetric matrix S can be uniquely decomposed as

\[S = LDLᵀ \quad \text{and} \quad S = L₁L₁ᵀ \quad \text{— Cholesky} \]

where:
- \(D \): diagonal w/Positive diagonal entries
- \(L \): lower-unitriangular
- \(L₁ \): lower-triangular with positive diagonal entries.

Proof: [supplement]

NB: Any such \(L₁ \) has full column rank, so \(S = L₁L₁ᵀ \) is necessarily positive-definite & symmetric (last time).

NB: Let \(U = DLT \).

(scales the rows of \(Lᵀ \) by the diagonal entries of \(D \))

Then \(U \) is upper-\(Δ \) with positive diagonal entries

⇒ in REF, so \(S = LU \) is the LU decomposition!

This tells us how to compute an LDLᵀ decomposition.
Procedure to compute $S=LDL^T$:

Let S be a symmetric matrix.

1. Compute the LU decomposition $S=LU$.
 - If you have to do a row swap then stop: S is not positive-definite.
 - If the diagonal entries of U are not all positive then stop: S is not positive-definite.

2. Let D be the matrix of diagonal entries of U (set the off-diagonal entries = 0). Then $S = LDL^T$.

NB: An LDLT decomposition can be computed in $\frac{4}{3}n^3$ flops (as opposed to $\frac{2}{3}n^3$ for LU). This requires a slightly more clever algorithm. See the supplement - it's also faster by hand!

NB: This is still an LU decomposition - lets you solve $Sx=b$ quickly.

NB: $S=QDQ^T$ and $S=LDL^T$ are both "diagonalizations" in the sense of quadratic forms (later).
Equation: Find the LDLᵀ decomposition of

\[S = \begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -1 \\ -2 & -1 & 14 \end{pmatrix} \]

2-column method:

\[
\begin{align*}
L & = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\
U & = \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 3 \\ 0 & 3 & 12 \end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
R₂ & = 2R₁ \\
R₃ & = R₁ \\
R₃ & = 3R₂
\end{align*}
\]

So \(S = LDLᵀ \) for

\[
L = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix} \quad D = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix}
\]

Check:

\[
DLᵀ = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 4 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 3 \end{pmatrix} = U
\]
Cholesky from LDLT:

If \(S \) is positive-definite then \(S = LDL^T \) where \(D \) is diagonal with positive diagonal entries.

If \(D = \begin{pmatrix} d_1 & 0 \\ 0 & d_n \end{pmatrix} \) set \(\sqrt{D} = \begin{pmatrix} \sqrt{d_1} & 0 \\ 0 & \sqrt{d_n} \end{pmatrix} \)

Then \(\sqrt{D}L \sqrt{D} = D \) and \(\sqrt{D}^T = \sqrt{D} \), so

\[
LDLT = L \sqrt{D} \sqrt{D} L^T = (L \sqrt{D})(L \sqrt{D})^T
\]

So just set

\[
L_1 = L \sqrt{D} \implies S = L_1L_1^T
\]

Strang:

"\(S = A^TA \) is how a positive-definite symmetric matrix is put together.

\(S = L_1L_1^T \) is how you pull it apart"

Eg:

\[
\begin{pmatrix} 2 & 4 & -2 \\ 4 & 9 & -1 \\ -2 & -1 & 14 \end{pmatrix} = L_1L_1^T \text{ for }
\]

\[
L_1 = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{pmatrix} \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 0 & \sqrt{5} & 0 \\ 0 & 0 & \sqrt{14} \end{pmatrix} = \begin{pmatrix} \sqrt{2} & 0 & 0 \\ 2\sqrt{5} & 1 & 0 \\ -\sqrt{2} & 3 & \sqrt{14} \end{pmatrix}
\]
Quadratic Optimization

This is an important application of the spectral theorem and positive-definiteness. Also, $\text{SVD} + Q2O + \varepsilon \cdot \text{stats} = \text{PCA}$.

It is the simplest case of quadratic programming, which is a big subfield of optimization. (So is least squares.)

For an example application, see the Wikipedia page for support-vector machine, an important tool in machine learning that reduces to a quadratic optimization problem. (There are tons of other applications.)

Def: An optimization problem means finding extremal values (minimum or maximum) of a function $f(x_1, \ldots, x_n)$ subject to some constraint on (x_1, \ldots, x_n).

In quadratic optimization, we consider quadratic functions.

Def: A quadratic form in n variables is a function $q(x_1, \ldots, x_n)$ = sum of terms of the form $a_{ij}x_ix_j$.

Eg: $q(x_1, x_2) = \frac{5}{2}x_1^2 + \frac{5}{2}x_2^2 - x_1x_2$

Non-Eg: $q(x_1, x_2) = x_1^2 + x_2^2 + x_1 + x_2$ is not a quadratic form: x_1, x_2 are linear terms.
NB: Thinking of $x = (x_0, \ldots, x_n)$ as a vector,
$q(x) = q(cx_1, \ldots, cx_n) = \sum a_{ij} (cx_i)(cx_j) = \sum c_i^2 a_{ij} x_i x_j = c^2 q(x)$

$q(x) = c^2 q(x)$

In quadratic optimization, the constraint on $x = (x_0, \ldots, x_n)$ is usually $\|x\| = 1$, i.e. $x_0^2 + \cdots + x_n^2 = 1$.

Quadratic Optimization Problem:
Given a quadratic form $q(x)$, find the minimum & maximum values of $q(x)$ subject to $\|x\| = 1$.

Eg: $q(x_0, x_2) = 3x_0^2 - 2x_2^2$

Maximum:
$q(x_0, x_2) = 3x_0^2 - 2x_2^2 \leq 3x_0^2 + 3x_2^2 = 3(x_0^2 + x_2^2) = 3\|x\|^2 = 3$

So the maximum value is 3; it is achieved at $(x_0, x_2) = \pm (1, 0)$: $q(\pm 1, 0) = 3$.

Minimum:
\[q(x,v) = 3x^2 - 2x^2 - 2x^2 = -2(x^2 + x^2) = -2 \|x\|^2 = -2 \]

So the minimum value is \(-2\); it is achieved at \((x_0, x_0) = \pm (0, 1); \ q(0, \pm 1) = -2\).

This example is easy because \(q(x,v) = 3x^2 - 2x^2\) involves only squares of the coordinates: there is no cross-term \(x_1x_2\).

Def: A quadratic form is **diagonal** if it has the form \(q(x_1, \ldots, x_n) = \text{sum of terms of the form } \lambda_i x_i^2\).

Terms of the form \(a_{ij} x_i x_j \ (i \neq j)\) are **cross-terms**.

Quadratic Optimization of Diagonal Forms:
Let \(q(x) = \sum \lambda_i x_i^2\). Order the \(x_i\) so that \(\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n\). Then

- The maximum value of \(q(x)\) is \(\lambda_1\).
- The minimum value of \(q(x)\) is \(\lambda_n\) (subject to \(\|x\| = 1\)).

NB: the \(\lambda_i\) could be negative.
Strategy: To solve a quadratic optimization problem, we want to diagonalize it to get rid of the cross terms.

To do this, we use symmetric matrices!

Fact: Every quadratic form can be written
\[q(x) = x^T S x \]
for a symmetric matrix \(S \).

\[\text{Eg: } S = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} \]

\[x^T S x = \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \]

\[= \begin{pmatrix} x_1 & x_2 & x_3 \end{pmatrix} \begin{pmatrix} x_1 + 2x_2 + 3x_3 \\ 2x_1 + 4x_2 + 5x_3 \\ 3x_1 + 5x_2 + 6x_3 \end{pmatrix} \]

\[= x_1^2 + 2x_1x_2 + 3x_1x_3 + 2x_2^2 + 4x_1x_2 + 5x_2x_3 + 3x_3x_1 + 5x_3x_2 + 6x_3^2 \]

\[= x_1^2 + 4x_2^2 + 6x_3^2 + 4x_1x_2 + 6x_1x_3 + 10x_2x_3 \]

NB: The (1,2) and (2,1) entries contribute to the \(x_1x_2 \) coefficient.
Given \(q \), how to get \(S \)?

The \(x_i^2 \) coefficients go on the diagonal, and half of the \(x_i x_j \) coefficient goes in the \((i,j)\) and \((j,i)\) entries.

\[
q(x_1, x_2, x_3) = a_{11}x_1^2 + a_{22}x_2^2 + a_{33}x_3^2 \\
+ a_{12}x_1x_2 + a_{13}x_1x_3 + a_{23}x_2x_3
\]

\[
\Rightarrow S = \begin{pmatrix}
a_{11} & a_{12}/2 & a_{13}/2 \\
a_{12}/2 & a_{22} & a_{23}/2 \\
a_{13}/2 & a_{23}/2 & a_{33}
\end{pmatrix}
\]

NB: \(q \) is diagonal \(\iff \) \(S \) is diagonal: the \(a_{ij} \) are the coefficients of the cross-terms.

\[
x^T \begin{pmatrix}
x_1 & \ldots & 0 \\
0 & \ldots & 0 \\
0 & \ldots & \lambda_n
\end{pmatrix} x = \lambda_1x_1^2 + \lambda_2x_2^2 + \ldots + \lambda_nx_n^2
\]

How does this help quadratic optimization?

Orthogonally diagonalize!

\[
q(x) = x^T S x
\]

Find a diagonal matrix \(D \) and orthogonal matrix \(Q \) such that \(S = QDQ^T \)

\[
\Rightarrow q(x) = x^TQDQ^Tx
\]
Let $x = Qy$; this is a change of variables

$q(x) = q(Qy) = (Qy)^T QDQ^T (Qy)$

$= y^T D y$

This is now diagonal!

NB: Q is orthogonal $\implies \|x\| = \|Qy\| = \|y\|$

So $\|x\| = 1 \iff \|y\| = 1$

Eg: Find the minimum & maximum of

$q(x, x_2) = \frac{1}{2} x_1^2 + \frac{1}{2} x_2^2 - 5 x_1 x_2$

subject to $\|x\| = 1$.

$q(x) = x^T \begin{pmatrix} \frac{1}{2} & -\frac{5}{2} \\ -\frac{5}{2} & \frac{1}{2} \end{pmatrix} x \implies S = \frac{1}{2} \begin{pmatrix} 1 & -5 \\ -5 & 1 \end{pmatrix}$

Orthogonally diagonalize: $S = QDQ^T$ for $Q = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, $D = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$

Set $x = Qy$:

$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} y_1 + y_2 \\ y_1 - y_2 \end{pmatrix}$

is a linear change of variables

Then $q(x) = y^T D y = 3y_1^2 - 2y_2^2$.
Checks

\[q(x) = q\left(\frac{1}{2}(-y_1+y_2), \frac{1}{2}(y_1+y_2)\right) \]
\[= \frac{1}{2} - \frac{1}{2}(-y_1+y_2)^2 + \frac{1}{2} - \frac{1}{2}(y_1+y_2)^2 - 5 \frac{1}{2}(-y_1+y_2)(y_1+y_2) \]
\[= \frac{1}{4}y_1^2 + \frac{1}{4}y_2^2 - \frac{1}{2}y_1y_2 + \frac{1}{4}y_1^2 + \frac{1}{4}y_2^2 + \frac{1}{2}y_1y_2 \]
\[+ \frac{5}{2}y_1^2 - \frac{5}{2}y_2^2 \]
\[= \left(\frac{1}{4} + \frac{1}{4} + \frac{5}{2}\right)y_1^2 + \left(\frac{1}{4} + \frac{1}{4} - \frac{5}{2}\right)y_2^2 = 3y_1^2 - 2y_2^2 \]

The maximum value of \(q \) subject to \(\|x\| = \|y\| = 1 \) is 3, achieved at \(y = (\pm 1, 0) \rightarrow x = Qy = \pm \frac{1}{\sqrt{2}}(-1) \)

The minimum value of \(q \) subject to \(\|x\| = \|y\| = 1 \) is -2, achieved at \(y = (0, \pm 1) \rightarrow x = Qy = \pm \frac{1}{\sqrt{2}}(1) \)

NB: The minimum value is the smallest diagonal entry of \(D \rightarrow \) smallest eigenvalue.

\(Q \left(\frac{1}{\sqrt{2}} \right) \) is \(\pm \) the first column of \(Q \rightarrow \) is a unit eigenvector for that eigenvalue.
Likewise for the largest eigenvalue.
Quadratic Optimization:

To find the minimum/maximum of a quadratic form $q(x)$ subject to $\|x\|=1$:

1. Write $q(x)=x^T S x$ for a symmetric matrix S.
2. Orthogonally diagonalize $S=Q D Q^T$ for $Q=(u_1 \ldots u_n)$, $D=(\lambda_1 \ldots \lambda_n)$.

Order the eigenvalues so $\lambda_1 \geq \ldots \geq \lambda_n$.

3. The maximum value of $q(x)$ is the largest eigenvalue λ_1.
 - It is achieved for $x = \text{any unit } \lambda_1$-eigenvector.

4. The minimum value of $q(x)$ is the smallest eigenvalue λ_n.
 - It is achieved for $x = \text{any unit } \lambda_n$-eigenvector.

NB: If $\text{GM}(\lambda_i)=1$ then the only unit λ_i-eigenvectors are $\pm u_i$. (Only 2 unit vectors are on any line.)

NB: $x=Q y$ diagonalizes q:

$q(x)=\lambda_1 y_1^2 + \ldots + \lambda_n y_n^2$.