Symmetric Matrices \& the Spectral Theorem
Recall: S is symmetric if $S=S^{\top} \quad(\Rightarrow$ square $)$
Super-important example= the matrix of column dot products
$S=A^{\top} A$ for any matrix $A\left[\left(A^{\top} A\right)^{\top}=A^{\top} A^{\top}=A^{\top} A\right]$
Eg: $S=\frac{1}{9}\left(\begin{array}{ccc}5 & -8 & 10 \\ -8 & 11 & 2 \\ 10 & 2 & 2\end{array}\right)$
[demo]' what do you notice about the eigenspaces?
Observation 0 : for any vectors v and ω,

$$
\begin{aligned}
& v \cdot\left(S_{\omega}\right)=v^{\top} S_{\omega}=\left(S_{v}\right)^{\top}{ }_{\omega}=\left(S_{v}\right)_{\omega}^{\top}=\left(S_{v}\right)_{\omega} \\
& v \cdot\left(S_{\omega}\right)=\left(S_{v}\right)_{\omega}
\end{aligned}
$$

Observation 1:
Eigenvectors of S with different eigenvalues are orthogonal.
Proof: Say $S_{v_{1}}=\lambda_{1} v_{1} \quad S_{v_{2}}=\lambda_{2} v_{2} \quad \lambda_{1} \neq \lambda_{2}$

$$
\begin{aligned}
& v_{1} \cdot\left(S v_{2}\right)=v_{1} \cdot\left(\lambda_{2} v_{2}\right)=\lambda_{2} v_{1} \cdot v_{2} \\
& \left(S v_{1}\right)^{\prime \prime} \cdot v_{2}=\lambda_{1} v_{1} \cdot v_{2}
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{1} v_{1} \cdot v_{2}=\lambda_{2} v_{1} \cdot v_{2} & \Rightarrow\left(\lambda_{1}-\lambda_{2}\right) v_{1} \cdot v_{2}=0 \\
& \xrightarrow{\lambda_{1} \neq \lambda_{2}}
\end{aligned}
$$

Observation 2:
All eigenvalues of S are real.
Proof: Say $S_{v}=\lambda_{v}$ and λ is not real.
Then $\lambda \neq \bar{\lambda}$. Conjugate eigenvalue: $S_{\bar{v}}=\bar{\lambda} \bar{v}$.
Observation $1 \Rightarrow v \cdot \bar{r}=0$. But

$$
\begin{aligned}
& v=\binom{z_{1}}{z_{n}} \quad \bar{v} \\
& \left.\Rightarrow \begin{array}{l}
\overline{z_{1}} \\
\vdots \\
\bar{z}_{n}
\end{array}\right) \\
& \Rightarrow \cdot \bar{v}=z_{z_{i}} \bar{z}_{1}+\cdots+z_{n} \bar{z} \\
& \\
& \\
& =\left|z_{1}\right|^{2}+\cdots+\left|z_{n}\right|^{2}>0
\end{aligned}
$$

So this canst happen.
Fact: If S is symmetric and λ is an eigenvalue, then $A M(\lambda)=G M(\lambda)$.
(The proof requires ideas from abstract linear algebra)
Consequence: S is diagonalizable over the real numbers! Moreover, there is an onthonomal eigenbasis.
$E_{g}: S=\frac{1}{9}\left(\begin{array}{ccc}5 & -8 & 10 \\ -8 & 11 & 2 \\ 10 & 2 & 2\end{array}\right) \quad p(\lambda)=-(\lambda-1)(\lambda+1)(\lambda-2)$
Eigenvectors:

$$
\begin{aligned}
& \lambda=1 \leadsto \omega_{1}=\left(\begin{array}{c}
1 \\
2 \\
2
\end{array}\right) \quad \lambda=2 \leadsto \omega_{3}=\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right) \\
& \lambda=-1 \leadsto \omega_{2}=\left(\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right)
\end{aligned}
$$

Check:

$$
\begin{aligned}
& -k: \\
& w_{1} \cdot w_{2}=\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
2 \\
2
\end{array}\right)=0 \quad w_{2} \cdot w_{3}=\left(\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-2 \\
-2
\end{array}\right)=0 \\
& w_{1} \cdot w_{3}=\left(\begin{array}{l}
1 \\
\frac{1}{2} \\
2
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)=0
\end{aligned}
$$

So $\left\{\omega_{1}, \omega_{2}, \omega_{3}\right\}$ is an orthogonal eigenbasis.
To make it orthonormal, you have to divide by the lengths to make them unit vectors:

$$
\begin{aligned}
& \left\|\omega_{1}\right\|=\sqrt{9}=3 \quad\left\|\omega_{2}\right\|=3 \quad\left\|\omega_{3}\right\|=3 \\
& \leadsto\left\{\frac{1}{3}\left(\begin{array}{l}
1 \\
2 \\
2
\end{array}\right), \frac{1}{3}\left(\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right), \frac{1}{3}\left(\begin{array}{c}
2 \\
-2 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

is an orthonormal eigenbasio.
Matrix form:

$$
\begin{aligned}
S & =Q D Q^{-1} & \text { for } & Q
\end{aligned}=\frac{1}{3}\left(\begin{array}{ccc}
1 & -2 & 2 \\
2 & -1 & -2 \\
2 & 2 & 1
\end{array}\right)
$$

Recall: A square matrix Q with orthonormal columns is called orthogonal. Then

$$
Q^{\top} Q=I_{n} \Rightarrow Q^{\top}=Q^{-1}
$$

Spectral Theorem: A real symmetric matrix S has an orthonormal eigenbasis of real eigenvectors

$$
S=Q D Q^{\top}
$$

for an orthogonal matrix Q and a diagonal matrix D.
Fast-forward: The SVD is basically the spectral theorem as applied to $S=A^{\top} A$.
Eg: $S=\left(\begin{array}{ccc}-1 & 1 & 2 \\ 1 & -1 & 2 \\ 2 & 2 & 2\end{array}\right) \quad p(\lambda)=-(\lambda-4)(\lambda+2)^{2}$

$$
\begin{aligned}
& \text { genspaces: } \\
& \left.\begin{array}{l}
\lambda=4 \leadsto S_{\text {pan }}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right.
\end{array}\right\} \\
& \left.\lambda=-2 \leadsto S_{p a n}\left\{\begin{array}{c}
-1 \\
0
\end{array}\right), ~\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

Check: $\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}-1 \\ 0 \\ 0\end{array}\right)=0 \quad\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right)=0$

$$
\binom{-1}{0} \cdot\left(\begin{array}{c}
-2 \\
1 \\
1
\end{array}\right)=2 \neq 0!
$$

That's ok- $\binom{-1}{0}$ and $\binom{-2}{0}$ have the same eigenvalue.

So how do we produce an orthonormal eigenbasis? Have to use Gram-Schmidt to find an orthonormal basis of the -2 -eigenspace.

$$
\begin{aligned}
\omega_{1}=\left(\begin{array}{l}
1 \\
1 \\
2
\end{array}\right) & \omega_{3} \\
\begin{aligned}
\omega_{2} & =\left(\begin{array}{c}
-2 \\
0 \\
1 \\
1 \\
0
\end{array}\right)
\end{aligned} & -\frac{\binom{-2}{1} \cdot\binom{-1}{0}}{\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)} \\
& =\left(\begin{array}{c}
-2 \\
0 \\
1
\end{array}\right)-\frac{2}{2}\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right)
\end{aligned}
$$

Check: $\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right) \cdot\binom{-1}{5}=0 \quad\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)-\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=0$
So $\left\{\frac{1}{\sqrt{6}}\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right), \frac{1}{\sqrt{2}}\binom{-1}{6}, \frac{1}{\sqrt{3}}\left(\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right)\right\}$ is an orthonormal eigentasesis, and $S=Q D Q^{\top}$ for

$$
Q=\left(\begin{array}{ccc}
1 / \sqrt{6} & -1 / \sqrt{2} & -1 / \sqrt{3} \\
1 / \sqrt{6} & 1 / \sqrt{2} & -1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & 1 / \sqrt{3}
\end{array}\right) \quad D=\left(\begin{array}{ccc}
4 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

Procedure to Orthogonally Diagonalize a
Real Symmetric Matrix S :
(1) Diagonalize S. (it is automatically diagonalizable)
(2) Normalize your eigenvectors/ran Gram-Schmidt if $\operatorname{GM}(\lambda) \geqslant 2$.
(3) Put them together \rightarrow orthonormal eigenbasis!

$$
\begin{gathered}
E g: S=\frac{1}{2}\left(\begin{array}{cc}
5 & -1 \\
-1 & 5
\end{array}\right) \quad p(\lambda)=\lambda^{2}-5 \lambda+6=(\lambda-2)(\lambda-3) \\
\lambda_{1}=2 \leadsto \omega_{1}=\frac{1}{\sqrt{2}}\binom{1}{1} \quad \lambda_{2}=3 \leadsto \omega_{2}=\frac{1}{\sqrt{2}}\binom{-1}{1} \\
S_{0} S=O D Q^{\top} \quad \text { for } Q=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
1 & -1 \\
1 & 1
\end{array}\right) D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) \\
N B: Q=\left(\begin{array}{lll}
\cos \left(45^{\circ}\right) & -\sin \left(45^{\circ}\right) \\
\sin \left(45^{\circ}\right) & \cos \left(45^{\circ}\right)
\end{array}\right) \\
\text { so } Q_{x}=\left(\begin{array}{l}
\text { rotate }
\end{array} \times \operatorname{ccc} 45^{\circ}\right)
\end{gathered}
$$

The picture is the same as before, but its easier to visualize multiplying by the orthogonal matrix Q (it preserves lengths \& angles).

Exercise (outer product form):
If $\left\{u_{1}, \ldots, u_{n}\right\}$ is an orthonormal eigenbasis of S and $S u_{i}=\lambda i u_{i}$, so $S=Q D Q t$ for

$$
Q=\left(\begin{array}{lll}
u_{1} & \hat{u}_{n} \\
1 & \cdots & u_{n}
\end{array} \quad \quad D=\left(\begin{array}{ccc}
\lambda_{1} & 0 \\
0 & \lambda_{n}
\end{array}\right)\right.
$$

then

$$
S=\lambda_{1} u_{1} u_{1}^{\top}+\lambda_{2} u_{2} u_{2}^{\top}+\cdots+\lambda_{n} u_{n} u_{n}^{\top}
$$

Compare: if P_{V} is a projection matrix, you can wite $P_{r}=Q Q^{\top}$ for $Q=\left(\begin{array}{lll}u_{1} & \cdots & u_{u} \\ 1 & & u_{1}\end{array}\right) d=\operatorname{dim}(v)$. $\leadsto P_{v}=u_{1} u_{1}^{\top}+\cdots+u_{a} u_{l}{ }^{\top}$.
(This is a special case- $\lambda_{1}=\cdots=\lambda_{d}=1$ and $\lambda_{2+1}=\cdots=\lambda_{n}=0$. Recall P_{s} is symmetric!)

Positive-Defrite Symmetric Matrices
Recall: $S=A^{\top} A$ is a very important example of a symmetric matrix!
Observation: If λ is an eigenvalue of $S=A^{\top} A$ with eigenvector v then

$$
\begin{aligned}
& v \cdot S_{v}=v \cdot \lambda v=\lambda\|v\|^{2} \\
& v \cdot S_{v}=v^{\top} S_{v}=v^{\top} A^{\top} A_{v}=\left\langle A_{v}\right)^{\top}\left(A_{v}\right) \\
& =\left(A_{v}\right) \cdot\left(A_{v}\right)=\left\|A_{v}\right\|^{2} \\
& \lambda\|v\|^{2}=\left\|A_{v}\right\|^{2}
\end{aligned}
$$

Consequence: If λ is an eigenvalue of $S=A^{\top} A$ then $\lambda \geqslant 0$. Moreaven, $\lambda=0 \Longleftrightarrow\|A v\|=0$ $\Leftrightarrow r \in \operatorname{Nal}(A)$, so if A has full column rank then $\lambda>0$.

Thus $A^{\top} A$ has only positive eigenvalues when A has full column rank. This condition is so important that it has a name.

Def: A symmetric matrix S is called

- positive-definite if all its eigenvalues are positive.
- positive-semidefinite if all its eigenvalues are non-negative.
(positive-semidefinite allows $\lambda=0$ as well.)
- indefinite if it has positive and negative eigenvalues.
NB: A positive-defrinite matrix B also positive-semidefinite!

$$
\lambda>0 \Rightarrow \lambda \geqslant 0
$$

Fast-forward: This will be important for solving quadratic optimization problems (next week).
Eg: $\cdot Q\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right) Q^{\top}$ is positive-definite

- $Q\left(\begin{array}{ll}3 & 0 \\ 0 & 0\end{array}\right) Q^{\top}$ is positive-semidefinite
- $Q\left(\begin{array}{cc}3 & 0 \\ 0 & -2\end{array}\right) Q^{\top}$ is indefinite.

Positive-definiteness is an important condition. We really want to be able to check it without computing eigenvalues.

Criteria for Positive -Definiteness:
Let S be a symmetric matrix.
The Following Are Equivalent:
(1) S is positive-definite
(2) $x^{\top} S x>0$ for all $x \neq 0$ ("positive energy")
(3) The determinants of all n upper-left submatrices are positive:

$$
\begin{aligned}
S=\left(\begin{array}{lll}
7 & 2 & 0 \\
2 & 6 & 2 \\
0 & 2 & 5
\end{array}\right) \leadsto \operatorname{det}\left(\begin{array}{lll}
7 & 2 & 0 \\
2 & 6 & 2 \\
0 & 2 & 5
\end{array}\right)>0 \\
\operatorname{det}\left(\begin{array}{ll}
7 & 2 \\
2 & 6
\end{array}\right)>0 \\
\operatorname{det}(7)>0
\end{aligned}
$$

(4) $S=A^{\top} A$ for a matrix A with full column rank
(5) S has an LU decomposition where U has positive diagonal entries.
(no row swaps needed!)
(5) is fastest: its an elimination problem.

Remarks:
(2) In physics, $x^{\top} S_{x}$ sometimes measures the of a system.
In any case, if v is an eigenvector with eigenvalue λ then

$$
v^{\top} S v=v \cdot \lambda v=\lambda\|v\|^{2}
$$

so (2) $\Rightarrow \lambda \geq 0$ for all λ, so (2) $\Rightarrow(1)$.
Conversely, $(1) \Rightarrow(2)$ because if $x \neq 0$ then $Q^{\top} x \neq 0$, so if $Q^{\top} x=\binom{y_{1}}{y_{n}}$ then

$$
\begin{aligned}
x^{\top} S_{x} & =x^{\top} Q D Q^{\top} x=\left(Q^{\top} x\right)^{\top} D\left(Q^{\top} x\right) \\
& =\left(y_{1} \cdots y_{n}\right)\left(\begin{array}{lll}
\lambda_{1} & & \\
& \cdots & \lambda_{n}
\end{array}\right)\binom{y_{1}}{\dot{y_{n}}} \\
& =\lambda_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}>0 .
\end{aligned}
$$

(3) Determinants are magic.
(Al so see the LDIT supplement.)
(4) $(4) \Rightarrow(1)$: we did this above.
$(1) \Rightarrow(4)$: This is the Cholesky decomposition: next time
(5) This is the LDL' decomposition: neat time.

Criteria for Positive - Semideforiteness:
Let S be a symmetric matrix.
The following are equivalent:
(1) S is positive-semidefriite
(2) $x^{\top} S x \geqslant 0$ for all $x \neq 0$
13) The determinants of all n upper-left submatrices are nonnegative.
(4) $S=A^{\top} A$ for a matrix A

Consequence: If A is any matrix then $A^{\top} A$ is positive'cemidefinite. In particular, it has nonnegative eigenvalues.

