Systems of ODEs
Toy Example: Here 3 an extremely simplistic model of disease spread:
$H(t)=$ \#healthy people at time t (in years)
$I(t)=$ \#infected people at time t
$D(t)=\#$ dead people at time t
Assumptions:
(1) Healthy people are infected at a rate of $0.3 \times$ \#healthy people
(2) Infected people recover at a ste of $0.9 \times$ \#ifected people
(3) Infected people die at a rote of $0.1 \times$ \#ifected people
In equations:
(1) $\frac{d H}{d t}=-0.3 \mathrm{H}+0.9 \mathrm{I}$
(2) $\frac{d I}{d t}=0.3 H-0.9 I-0.1 I$
(3) $\frac{d D}{d t}=0.1 I$

Matrix Form let $u(t)=(H(t), I(t), D(t))$.

$$
\frac{d u(t)}{d t}=u^{\prime}(t)=\left[\begin{array}{ccc}
-0.3 & 0.9 & 0 \\
0.3 & -0.9-0.1 & 0 \\
0 & 0.1 & 0
\end{array}\right] u(t)
$$

Def: A system of linear ordinary differential equations (ODEs) is a system of equations in unknown functions $u_{1}(t), \ldots, u_{n}(t)$ equating the derivatives u_{i}^{\prime} with a linear combination of the u_{i} :

$$
\begin{aligned}
u_{1}^{\prime}(t) & =a_{n} u_{1}(t)+\cdots+a_{1 n} u_{n}(t) \\
& \vdots \\
u_{n}^{\prime}(t) & =a_{n} u_{1}(t)+\cdots+a_{n n} u_{n}(t)
\end{aligned}
$$

Matrix form: writing $u(t)=\left(u_{1}(t), \ldots, u_{n}(t)\right)$ and $w^{\prime}(t)=\left(u_{i}^{\prime}(t), \ldots, u_{n}^{\prime}(t)\right)$, a system of linear ODEs has the form

$$
u^{\prime}(t)=\operatorname{Au}(t)
$$

for an $n \times n$ matrix A
(with numbers in it, not functions of t).
If you also specify the initial value $u(0)=u_{0}$, this is called an initial value problem.

How to solve a system of linear ODEs?
Diagonalize A!
Eg: Suppose u_{0} is an eigenvector of $A: A u_{0}=\lambda u_{0}$.
Then the solution of the mitral value problem $u^{\prime}=A u \quad u(0)=u_{0}$ is $u(t)=e^{x t} u_{0}$:

$$
\begin{aligned}
& u^{\prime}(t)=\frac{d}{d t} e^{\lambda t} u_{0}=\lambda e^{\lambda t} u_{0} \\
& A_{u}(t)=A e^{\lambda t} u_{0}=e^{\lambda t} A u_{0}=\lambda e^{\lambda t} u_{0} \\
& \text { scalar r eater } \quad u(0)=e^{\lambda 0} u_{0}=u_{0}
\end{aligned}
$$

In generals ve expand $u_{0} m$ an eigenbosis, as for difference equations:

$$
\begin{aligned}
u_{0} & =x_{1} \omega_{1}+\cdots+x_{i} \nu_{n} \quad A \omega_{i}=\lambda_{i} \omega_{i} \\
u s(t) & =e^{\lambda_{i} t} x_{1} \omega_{1}+\cdots+e^{\lambda_{n} t} x_{n} \omega_{n}
\end{aligned}
$$

is the solution of $u^{\prime}=A u, u(0)=u_{0}$.
Check:

$$
\begin{aligned}
u^{\prime}(t) & =\lambda_{1} e^{\lambda_{1} t} t_{x_{1} \omega_{1}}+\cdots+\lambda_{n} e^{\lambda_{n} t} x_{n} \omega_{n} \\
A_{u}(t) & =e^{\lambda_{1} t} x_{x_{1}} A_{\omega_{1}}+\cdots+e^{\lambda_{n} t} x_{n} A \omega_{n} \\
& =\lambda_{1} e^{\lambda_{1} t} x_{x_{1} \omega_{1}+\cdots+\lambda_{n} e^{\lambda_{n} t}}^{x_{n} \omega_{n}} \\
u(0) & =e^{\lambda_{0} x_{1} \omega_{1}+\cdots+e^{\lambda_{0}} x_{n} \omega_{n}}=u_{0}
\end{aligned}
$$

Eg: In our infectious disease model, suppose $u_{0}=(\operatorname{lo0}, 1,0) \quad(1000$ healthy people, 1 infected, 0 dead)
Eigenvalues of $A=\left(\begin{array}{ccc}-0.3 & -9 & 0 \\ 0.3 & -1 & 0 \\ 0 & -1 & 0\end{array}\right)$ are

$$
\begin{aligned}
& \lambda_{1} \approx-.0235 \\
& \lambda_{2} \approx-1.28
\end{aligned} \quad \lambda_{3}=0
$$

Eigenvectors are

$$
\omega_{1} \approx\left(\begin{array}{c}
11.77 \\
-12.77 \\
1
\end{array}\right) \quad \omega_{2} \approx\left(\begin{array}{c}
-.765 \\
-.235 \\
1
\end{array}\right) \quad \omega_{3}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

Solve $u_{0}=x_{1} \omega_{1}+x_{2} \omega_{2}+x_{3} \omega_{3}$:

$$
u_{0}=\left(\begin{array}{c}
1000 \\
1 \\
0
\end{array}\right) \approx 18.70 \omega_{1}-1019.70 \omega_{2}+1001 \omega_{3}
$$

Solution is:

$$
\begin{aligned}
u(t)= & e^{-.0235 t} \cdot 18.70 \omega_{1}-e^{-1.28 t} \cdot 1019.70 \omega_{2}+1001 \omega_{3} \\
\Rightarrow & H(t)=220 e^{-.0235 t}+780 e^{-1.28 t} \\
& I(t)=-238 e^{-.0235 t}+239 e^{-1.28 t} \\
& D(t)=18.7 e^{-.0235 t}-1019.7 e^{-1.28 t}+1001
\end{aligned}
$$

Looks like the human race is doomed...

Procedure for solving a linear system of ODEs using diagonalization:
To solve $u^{\prime}=A u, u(0)=u$. when A is diagonalicable:
(1) Diagonalize A : get an eigenbasis $\left\{\omega_{y} \ldots \omega_{n}\right\}$ with eigenvalues $\lambda_{(j, \ldots,} \lambda_{n}$.
(2) Expand u_{0} in the eigenbasis? solve $u_{0}=x_{1} w_{1}+\cdots+x_{n} w_{n}$
Solution:

$$
u(t)=e^{\lambda_{1} t} x_{1} \omega_{1}+\cdots+e^{\lambda_{n} t} x_{n} \omega_{n}
$$

Compare to:
Procedure for solving a Difference Equation using diagonalization:
To solve $v_{k+1}=A v_{k}, v$ fixed when A is diagonalicable:
(1) Diagonalize A : get an eigenbasis $\left\{\omega_{s} \ldots, \omega_{n}\right\}$ with eigenvalues $\lambda_{(g} \ldots, \lambda_{n}$.
(2) Expand v_{0} in the eigenbass; solve $v_{0}=x_{1} w_{1}+\cdots+x_{n} w_{n}$
Solution:

$$
v_{k}=\lambda_{1}^{k} x_{1} \omega_{1}+\cdots+\lambda_{n}^{k} x_{n} \omega_{n}
$$

This works fie with complex eigenvalues. As with difference equations, you can write the solution with real numbers using trig functions.
Eg: $u_{1}^{\prime}(t)=u_{2}, \quad u_{2}^{\prime}(t)=-4 u_{1}$,

$$
u_{1}(0)=2 \quad u_{2}(0)=0
$$

$\leadsto u^{\prime}=A_{n}$ for $A=\left(\begin{array}{cc}0 & 1 \\ -4 & 0\end{array}\right) u(0)=\binom{2}{0}$
Eigenvalues are $\lambda=2 i, \quad \bar{\lambda}=-2 i$
Eigenvectors are $\omega=\binom{1}{2 i} \quad \bar{\omega}=\binom{1}{-2 i}$
Solve $\binom{2}{0}=x_{1} w+x_{2} \bar{\omega} \leadsto x_{1}=x_{2}=1$
Solution is

$$
\begin{aligned}
& u(t)=e^{\lambda t} \omega+e^{\lambda t} \bar{\omega}=2 \operatorname{Re}\left[e^{\lambda t} \omega\right] \\
= & 2 \operatorname{Re}\left[e^{2 i t}\binom{1}{2 i}\right]=2 \operatorname{Re}\left[(\cos (2 t)+i \sin (2 t))\binom{1}{2 i}\right] \\
= & 2 \operatorname{Re}\binom{\cos (2 t)+i \sin (2 t)}{-2 \sin (2 t)+2 i \cos (2 t)}=\binom{2 \cos (2 t)}{-4 \sin (2 t)}
\end{aligned}
$$

Check:

$$
\begin{aligned}
& u_{1}^{\prime}=(2 \cos (2 t))^{\prime}=-4 \sin (2 t)=u_{2} \\
& u_{2}^{\prime}=(-4 \sin (2 t))^{\prime}=-8 \cos (2 t)=-4 u_{1} \\
& u_{1}(0)=2 \quad u_{2}(0)=0
\end{aligned}
$$

This method can also be used to solve (linear) ODEs containing tiger -order derivatives.

Eg: Hooke's Lav says the fore applied by a sporing a proportional to the amount it is stretched or compressed:

$$
F(t)=-k p(t) \quad k>0
$$

$F=m a, a=a c c e l e r a t i o n=\rho^{\prime \prime}$: replace k by $k k_{m}$:

$$
p^{\prime \prime}(t)=-k p(t)
$$

Trick: Let $u_{1}=p, u_{2}=p^{\prime}$. Then

$$
u_{1}^{\prime}=u_{2} \quad u_{2}^{\prime}=-k u_{1}
$$

This is the system

$$
u^{\prime}(t)=\left(\begin{array}{cc}
0 & 1 \\
-k & 0
\end{array}\right) u(t)
$$

We solved this before for $k=4, u(0)=(2,0)$:

$$
\begin{aligned}
& p(t)=2 \cos (2 t) \quad \text { oscillation. } \\
& p^{\prime}(t)=-4 \sin (2 t) \quad
\end{aligned}
$$

The Matrix Exponential
There are 2 features missing form the ODEs picture that we had for difference equations:
(1) Matrix foo: $V_{k}=C D^{k} C^{-1} v_{0}$
(2) Existence of solutions:
it's obvious that $V_{k}=A^{h} v_{0}$ has a solution

- it was not obvious how to compute it.

Both can be filled in using the matrix exponential.
Recall: Using Taylor expansions, you can write

$$
e^{x}=1+x+\frac{1}{3!} x^{2}+\frac{1}{3!} x^{3}+\cdots \quad \text { (convergent rum) }
$$

Def: Let A be an $n \times n$ matrix. The matrix exponential is the $n \times n$ matrix

$$
e^{A}=I_{n}+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\cdots \text { (convergent sum) }
$$

Eg: $A=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \rightarrow A^{2}=0$, so

$$
e^{A t}=I_{2}+A t+0+\cdots=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right)
$$

$E g: A=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \leadsto A^{k}=\left(\begin{array}{cc}\lambda_{1}^{k} & 0 \\ 0 & \lambda_{2}^{k}\end{array}\right)$, so

$$
\begin{aligned}
e^{A t} & =\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right)+\left(\begin{array}{cc}
\lambda_{1}+0 \\
0 & \lambda_{1} t
\end{array}\right)+\left(\begin{array}{cc}
\frac{1}{2} \lambda_{1}^{2} t^{2} & 0 \\
0 & \frac{1}{2 \lambda} \lambda_{i} t^{2}
\end{array}\right)+\left(\begin{array}{cc}
1 & 1 \\
\frac{1}{3} \lambda_{1}^{3} t^{3} & 0 \\
0 & \frac{1}{3} \lambda_{2}^{3} t^{3}
\end{array}\right)+\cdots \\
& =\left(\begin{array}{cc}
e^{\lambda_{i} t} & 0 \\
0 & e^{\lambda_{2} t}
\end{array}\right)
\end{aligned}
$$

Why do se curs about $e^{A t}$?
Fact: $\frac{d}{d t} e^{A t}=A e^{A t}$
Consequence: $u(t)=e^{A t} u_{0}$ solves the linear $O D E$

$$
u^{\prime}(t)=A u(t) \quad u(0)=u_{0}
$$

In particular, a solution exists.
The equations

$$
u(t)=e^{A t} u_{0} \text { and } v_{k}=A^{k} v_{0}
$$

are analogous: they both show a solution exists, but give you no way to compute it.

Eg: If $A=C D C^{-1}$ is diagonalizable then

$$
e^{A t}=C e^{D t} C^{-1}=C\left(\begin{array}{ccc}
e^{\lambda+1} & 0 \\
0 & \cdots & e^{\lambda_{t} t}
\end{array}\right) C^{-1}
$$

This B computable!

The equations

$$
e^{A t}=C e^{D t} C^{-1} \quad \text { and } \quad A^{k}=C D^{k} C^{-1}
$$

are also analogous' they are computable!
In fact, if you expand out

$$
u(t)=C e^{\Delta t} C^{-1} u_{0}
$$

you exactly get the rector form

$$
u(t)=e^{\lambda_{1} t} x_{1} \omega_{1}+\cdots+e^{\lambda_{n} t} x_{n} \omega_{n}
$$

where $\left(x_{1}, \ldots, x_{n}\right)=C^{-1} n_{0}$.
Difference Equation Dictionary Initial Value Problem $V_{k+1}=A v_{k} v_{0}$ fixed Problem $u^{\prime}(t)=A u(t) u(0)$ fixed

$$
V_{k}=A^{k} V_{0}
$$

$\left.\begin{array}{c}U \text { ncomputable } \\ \text { Solution } \\ u(t)\end{array}\right)=e^{A t} u(0)$
$v_{k}=\lambda_{1}^{k} x_{1} \omega_{1}+\cdots+\lambda_{r}^{k} x_{n} \omega_{n}$ Computable $u(t)=e^{\lambda_{1} t_{1}} \omega_{1}+\cdots+e^{\lambda_{n} t} x_{n} \omega_{n}$
for $v_{0}=x_{1} \omega_{1}+\cdots+x_{n} \omega_{n}$ Solution for $u(0)=x_{1} \omega_{1}+\cdots+x_{n} \omega_{n}$ (when diagonalizable)

$$
A^{k}=C D^{k} C^{-1} \quad \text { Matrix } \quad e^{A t}=C e^{D t} C^{-1}
$$

