1. Decide if each statement is true or false, and explain why.
 a) A square matrix has no free variables.
 b) An invertible matrix has no free variables.
 c) An $m \times n$ matrix has at most m pivots.
 d) A wide matrix (more columns than rows) must have a free variable.
 e) If A is a tall matrix (more rows than columns), then $Ax = b$ has at most one solution.

2. Consider the vectors
 \[v = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \quad w = \begin{pmatrix} -1 \\ 1 \end{pmatrix}. \]
 Draw the 16 linear combinations $cv + dw$ ($c, d = -1, 0, 1, 2$) as points in the xy-plane.

3. Certain vectors v, w in \mathbb{R}^2 are drawn below. Express each of b_1, b_2, b_3, b_4, b_5 as a linear combination of v, w. Do not try to guess the coordinates of v and w!

4. Consider the vectors
 \[u = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad v = \begin{pmatrix} 0 \\ 1 \end{pmatrix}. \]
 Draw a picture of all of the linear combinations $au + bv$ for real numbers a, b satisfying $0 \leq a \leq 1$ and $0 \leq b \leq 1$. (This will be a shaded region in the xy-plane.)
5. Draw a picture of all vectors \(b \in \mathbb{R}^2 \) for which the equation
\[
\begin{pmatrix}
1 & 2 \\
-2 & -4 \\
\end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = b
\]
is consistent. [Hint: the answer is a span!]

6. For each matrix \(A \) and vector \(b \), and express the solution set in the form
\[
p + \text{Span}\{???, ???\}
\]
for some vector \(p \). For instance,
\[
\begin{pmatrix} 1 & -1 \\ 2 & -2 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad \text{---->} \quad \begin{pmatrix} 0 \\ 1 \end{pmatrix} + \text{Span}\{\begin{pmatrix} 1 \\ 0 \end{pmatrix}\}.
\]
[Hint: You found the parametric vector form in HW3#13.]

 a) \(A = \begin{pmatrix} 2 & 1 & 1 & 4 \\ 4 & 2 & 1 & 7 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \)

 b) \(A = \begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \quad b = \begin{pmatrix} 3 \\ 2 \\ 49 \end{pmatrix} \)

 c) \(A = \begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ -2 & -4 & -5 & 4 & 1 \\ 1 & 2 & 2 & -3 & -1 \\ -3 & -6 & -7 & 7 & 6 \end{pmatrix} \quad b = \begin{pmatrix} 2 \\ 4 \\ -6 \\ 10 \end{pmatrix} \)

 d) \(A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \quad b = \begin{pmatrix} 2 \\ 5 \\ 4 \end{pmatrix} \)

7. For each matrix \(A \) in Problem 6, write the solution set of \(Ax = 0 \) as a span. Does there exist a nontrivial solution? Do not do Gauss–Jordan elimination again!

8. When is the following system consistent?
\[
\begin{align*}
2x_1 + 2x_2 - x_3 &= b_1 \\
-4x_1 - 5x_2 + 5x_3 &= b_2 \\
6x_1 + x_2 + 12x_3 &= b_3
\end{align*}
\]
Your answer should be a single linear equation in \(b_1, b_2, b_3 \). [Hint: perform Gaussian elimination.]

 Explain the relationship between this equation
\[
\text{Span}\left\{\begin{pmatrix} 2 \\ -4 \\ 6 \end{pmatrix}, \begin{pmatrix} 2 \\ -5 \\ 5 \end{pmatrix}, \begin{pmatrix} -1 \\ 1 \\ 12 \end{pmatrix}\right\}.
\]
9. Let A be a 3×4 matrix whose columns span the plane $x + y + z = 0$.
 a) Find a vector $b \in \mathbb{R}^3$ making the system $Ax = b$ consistent.
 b) Find a vector $b \in \mathbb{R}^3$ making the system $Ax = b$ inconsistent.

10. Suppose that $Ax = b$ is consistent. Explain why $Ax = b$ has a unique solution precisely when $Ax = 0$ has only the trivial solution.

11. Give geometric descriptions of the following spans (line, plane, ...).
 a) Span $\left\{ \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \right\}$
 b) Span $\left\{ \begin{pmatrix} 0 \\ 1 \\ 3 \\ -2 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -2 \\ -6 \end{pmatrix} \right\}$
 c) Span $\left\{ \begin{pmatrix} 0 \\ 1 \\ -2 \\ -6 \end{pmatrix} \right\}$
 d) Span $\left\{ \begin{pmatrix} 2 \\ -4 \\ 6 \\ -5 \\ 1 \\ 12 \end{pmatrix}, \begin{pmatrix} -1 \\ 5 \\ -6 \end{pmatrix} \right\}$
 e) Span $\left\{ \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}$

 [Hint: for d), compare Problem 8.]

12. a) List five nonzero vectors contained in Span $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{pmatrix} \right\}$.
 b) Is $\begin{pmatrix} 0 \\ 3 \\ 6 \end{pmatrix}$ contained in Span $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{pmatrix} \right\}$?

 If so, express $\begin{pmatrix} 0 \\ 3 \\ 6 \end{pmatrix}$ as a linear combination of $\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{pmatrix}$.

 c) Show that $\begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$ is contained in Span $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \end{pmatrix} \right\}$.
 d) Describe Span $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{pmatrix} \right\}$ geometrically.
 e) Find a vector not contained in Span $\left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \end{pmatrix} \right\}$.

13. Decide if each statement is true or false, and explain why.
 a) A vector \(b \) is a linear combination of the columns of \(A \) if and only if \(Ax = b \) has a solution.
 b) There is a matrix \(A \) such that \(Ax = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \) has infinitely many solutions and \(Ax = \begin{pmatrix} 2 \\ -2 \end{pmatrix} \) has exactly one solution.
 c) The zero vector is contained in every span.
 d) The matrix equation \(Ax = 0 \) can be consistent or inconsistent, depending on what \(A \) is.
 e) If the zero vector is a solution of a system of equations, then the system is homogeneous.
 f) If \(Ax = b \) has a unique solution, then \(A \) has a pivot in every column.
 g) If \(Ax = b \) is consistent, then the solution set of \(Ax = b \) is obtained by translating the solution set of \(Ax = 0 \).
 h) It is possible for \(Ax = b \) to have exactly 13 solutions.

14. Find a spanning set for the null space of each matrix, and express the null space as the column space of some other matrix.

 a) \(\begin{pmatrix} 2 & 1 & 1 & 4 \\ 4 & 2 & 1 & 7 \end{pmatrix} \)
 b) \(\begin{pmatrix} 2 & 2 & -1 \\ -4 & -5 & 5 \\ 6 & 1 & 12 \end{pmatrix} \)
 c) \(\begin{pmatrix} 1 & 2 & 3 & -1 & 1 \\ -2 & -4 & -5 & 4 & 1 \\ 1 & 2 & 2 & -3 & -1 \\ -3 & -6 & -7 & 7 & 6 \end{pmatrix} \)
 d) \(\begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix} \)

[Hint: Compare Problem 7.]
15. Draw pictures of the null space and the column space of the following matrices. Be precise!

\[A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \]:

\[A = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix} \]:

\[A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \]:

16. Give examples of subsets \(V \) of \(\mathbb{R}^2 \) such that:

a) \(V \) is closed under addition and contains 0, but is not closed under scalar multiplication.

b) \(V \) is closed under scalar multiplication and contains 0, but is not closed under addition.

c) \(V \) is closed under addition and scalar multiplication, but does not contain 0.

Therefore, none of these conditions is redundant.
17. Which of the following subsets of \mathbb{R}^3 are subspaces? If it is not a subspace, why not? If it is, write it as the column space or null space of some matrix.

a) The plane $\{(x, y, x) : x, y \in \mathbb{R}\}$.

b) The plane $\{(x, y, 1) : x, y \in \mathbb{R}\}$.

c) The set consisting of all vectors (x, y, z) such that $xy = 0$.

d) The set consisting of all vectors (x, y, z) such that $x \leq y$.

e) The span of $(1, 2, 3)$ and $(2, 1, -3)$.

f) The solution set of the system of equations
\[
\begin{align*}
 x + y + z &= 0 \\
 x - 2y - z &= 0.
\end{align*}
\]

g) The solution set of the system of equations
\[
\begin{align*}
 x + y + z &= 0 \\
 x - 2y - z &= 1.
\end{align*}
\]

18. Find a nonzero 2×2 matrix such that $A^2 = 0$.

19. a) Explain why $\text{Col}(AB)$ is contained in $\text{Col}(A)$.

b) Give an example where $\text{Col}(AB) \neq \text{Col}(A)$.

[Hint: use Problem 18.]

20. a) Explain why $\text{Nul}(AB)$ contains $\text{Nul}(B)$.

b) Give an example where $\text{Nul}(AB) \neq \text{Nul}(B)$.

[Hint: use Problem 18.]

21. Decide if each statement is true or false, and explain why.

a) The column space of an $m \times n$ matrix with m pivots is a subspace of \mathbb{R}^m.

b) The null space of an $m \times n$ matrix with n pivots is equal to \mathbb{R}^n.

c) If $\text{Col}(A) = \{0\}$, then A is the zero matrix.

d) The column space of $2A$ equals the column space of A.

e) The null space of $A + B$ contains the null space of A.

f) If U is an echelon form of A, then $\text{Nul}(U) = \text{Nul}(A)$.

g) If U is an echelon form of A, then $\text{Col}(U) = \text{Col}(A)$.