
Math 218D-1: Homework #13

due Wednesday, April 19, at 11:59pm

1. For each quadratic form q(x1, x2) of HW12#15(a,b), first i) draw the solutions
of q(x1, x2) = 1, being sure to draw the shortest and longest solutions, and then
ii) find the maximum and minimum values of ∥x∥2 subject to the constraint q(x) =
1, and at which points (x1, x2) these values are attained.

What happens if you try to extremize ∥x∥2 subject to

q(x1, x2) = x2
1 − 6x1 x2 + x2

2 = 1?

(This is the form from part (c) of HW12#15.)

2. a) Consider the quadratic form

q(x1, x2, x3) = 7x2
1 + 6x2

2 + 5x2
3 + 4x1 x2 + 4x2 x3,

of HW12#16. Find the smallest value of q(x) subject to the constraints ∥x∥= 1
and x ⊥ 1

3(1,−2, 2). At which vectors x is this minimum attained?

b) Consider the quadratic form

q(x1, x2, x3) = x2
1 + x2

2 + 7x2
3 − 16x1 x2 + 8x1 x3 + 8x2 x3.

of HW12#17. Find the largest value of q(x) subject to the constraints ∥x∥= 1
and x ⊥ 1p

5
(0,1, 2). At which vectors x is this maximum attained?

3. For each matrix A, find the minimum and maximum values of ∥Ax∥2 subject to the
constraint ∥x∥= 1. At which vectors are these extrema achieved? Check your work
by choosing a unit vector x maximizing ∥Ax∥2, computing b = Ax , and verifying
that ∥b∥2 is equal to the maximum.

a)

 

3 −1
2 3
1 −1

!

b)
�

1 −3
0 0

�

c)







2 0 −1
1 1 2
1 −1 0
1 2 0







4. Consider the matrix

A=







3 2 −1 4 −3
1 7 −2 3 −5
2 0 8 −1 1
1 2 0 3 9






.

a) Find a unit vector u1 maximizing ∥Ax∥2 subject to ∥x∥= 1.

b) Find the maximum value of ∥Ax∥2 subject to ∥x∥= 1 and x ⊥ u1.

c) Find the minimum value of ∥Ax∥ subject to ∥x∥= 1 without doing any work.

You’ll need to use a computer algebra system. With the Sage cell on the course
webpage, you’d want something like this:



A = Matrix([[ 3., 2.,-1., 4.,-3.],
[ 1., 7.,-2., 3.,-5.],
[ 2., 0., 8.,-1., 1.],
[ 1., 2., 0., 3., 9.]])

pprint((A.transpose()*A).eigenvects())

(Entering numbers as “3.” instead of “3” forces SymPy to perform a floating-point
computation instead of a symbolic one.)

5. In this problem, we will touch on the role of quadratic optimization in spectral
graph theory. Spectral graph theory is the study of graphs using linear algebra, and
is widely applied to problems in networking and partitioning. (Google’s PageRank
algorithm can be formulated as a spectral graph theory problem.)

A graph is a set of vertices, or points, connected by a set of edges. For simplicity, we
will assume that each edge has distinct endpoints (i.e., there are no loop edges),
and that there is at most one edge connecting any two vertices: such a graph is
called simple. Under these assumptions, an edge is determined by the two vertices
it connects, so we can write e = (1,2) for the edge connecting vertices 1 and 2. We
also write i ∼ j if (i, j) is an edge of G. The degree of a vertex is the number of
edges connected to it; the degree of vertex i is written deg(i).

Let G be a graph with n vertices labeled 1, 2, . . . , n. We consider a vector x ∈ Rn

as a way to assign a real number to each vertex: the ith coordinate x i is the number
attached to the ith vertex. The Laplacian of G is the n×n matrix L whose (i, j) entry
is

Li j =







deg(i) if i = j
−1 if there is an edge from vertex i to vertex j
0 otherwise.

Note that L is symmetric. Let x ∈ Rn and let y = Lx . Then the ith coordinate of y
is

(⋆) yi = x i deg(i)−
∑

j∼i

x j =
∑

j∼i

(x i − x j).

In other words, y is the vector that assigns the number
∑

j∼i(x i − x j) to vertex i.
The eigenvalues of the graph Laplacian contain important information about the

structure of the graph.

a) Show that the vector 1= (1,1, . . . , 1) ∈ Rn is in the null space of L.

It follows that 0 is always an eigenvalue of L.

b) Show that x T Lx =
∑

j∼i

(x i − x j)
2. Explain why L is positive-semidefinite.

Since L is positive-semidefinite, all of its eigenvalues are nonnegative, so 0 is the
smallest eigenvalue of L. The fact that 0 is an eigenvalue gives us no information
about the graph, so we wish to “rule it out” by imposing the constraint x ⊥ 1.

According to b), minimizing q(x) = x T Lx subject to the constraints ∥x∥2 = 1
and x ⊥ 1 amounts to finding a way to assign a number to each vertex such that



neighboring vertices have similar values, but such that the sum of the values is zero
(x ⊥ 1) and the sum of their squares is 1 (∥x∥= 1).

For each of the following graphs, i) compute the Laplacian matrix L and ii) min-
imize x T Lx subject to x ⊥ 1 and ∥x∥ = 1. iii) For a (unit) vector x achieving this
minimum, draw the number x i next to vertex i on the graph. iv) What does the
second-smallest eigenvalue say about the graph? (This is open-ended.)
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You should feel free to use a computer algebra system to compute the eigenvalues
and eigenvectors. For instance, you can use SymPy in the Sage cell on the course
webpage. Finding the eigenvalues and eigenvectors of a matrix in SymPy is done
as follows: if your matrix is

A=

 

7 2 0
2 6 2
0 2 5

!

then you would type:

A = Matrix([[7.,2.,0.],[2.,6.,2.],[0.,2.,5.]])
pprint(A.eigenvects())

(Entering numbers as “3.” instead of “3” forces SymPy to perform a floating-point
computation instead of a symbolic one.) The output is a list of tuples of the form
(eigenvalue, multiplicity, eigenspace basis)—note that the eigenspace basis will not
necessarily be orthonormal.



6. For each matrix A, find the singular value decomposition in the outer product form

A= σ1u1vT
1 +σ2u2vT

2 + · · ·+σrur vT
r .

a)
�

8 4
1 13

�

b)
�

1 3
2 6

�

c)







−3 11
10 −2

1 5
−4 6







d)
�

9 7 10 8
−13 1 5 −6

�

e)

 

3 7 1 5
3 1 7 5
6 2 2 −2

!

7. Consider the matrix

A=
�

8 4
1 13

�

of Problem 6(a). Let σ1,σ2 be the singular values of A. Find all singular value
decompositions A= σ1u1vT

1 +σ2u2vT
2 .

8. Let A be a matrix with nonzero orthogonal columns w1, . . . , wn of lengthsσ1 ≥ σ2 ≥
. . .≥ σn, respectively. Find the SVD of A in outer product form.

9. Let S be a symmetric matrix with eigenvaluesλ1, . . . ,λn (counted with multiplicity).
Order the eigenvalues so that |λ1| ≥ |λ2| ≥ · · · ≥ |λr | > 0 = λr+1 = · · · = λn. Let
{v1, . . . , vn} be an orthonormal eigenbasis, where vi has eigenvalue λi.

a) Show that the singular values of S are |λ1|, . . . , |λr |. In particular, rank(S) = r.

b) Find the singular value decomposition of S in outer product form, in terms of
the λi and the vi.

10. a) Show that all singular values of an orthogonal matrix are equal to 1.

b) Let A be an m × n matrix, let Q1 be an m × m orthogonal matrix, and let Q2
be an n × n orthogonal matrix. Show that A has the same singular values as
Q1AQ2. [Hint: Use HW10#11.]

Remark: This fact is heavily exploited when numerically computing the SVD: a
complicated matrix is simplified by multiplying on the left and right by simple or-
thogonal matrices.

11. Let A be a matrix of full column rank and let A=QR be the QR decomposition of A.

a) Show that A and R have the same singular valuesσ1, . . . ,σr and the same right
singular vectors v1, . . . , vr .

b) What is the relationship between the left singular vectors of A and R?

https://en.wikipedia.org/wiki/Householder_transformation
https://en.wikipedia.org/wiki/Householder_transformation


12. Let A be a matrix with first singular valueσ1 and first right singular vector v1. Recall
that the matrix norm of A is the maximum value of ∥Ax∥ subject to ∥x∥= 1, and is
denoted ∥A∥.

a) Show that ∥Ax∥ is maximized at x = v1 (subject to ∥x∥ = 1), with maximum
value σ1.

b) Suppose now that A is square and λ is an eigenvalue of A. Show that |λ| ≤ σ1.
(You may assume λ is real, although it is also true for complex eigenvalues.)

This shows that the largest singular value is at least as big as the largest eigenvalue.

13. a) Find the eigenvalues and singular values of

A=







0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0






.

b) Find the (real and complex) eigenvalues and singular values of

A′ =







0 1 0 0
0 0 1 0
0 0 0 1

0.000 1 0 0 0






.

c) Note that A is very close to A′ numerically. Were the eigenvalues of A close to
the eigenvalues of A′? What about the singular values?

This problem is meant to illustrate the fact that eigenvalues are numerically unstable
but singular values are numerically stable. This is another advantage of the SVD.

14. Decide if each statement is true or false, and explain why.

a) The left singular vectors of A are eigenvectors of AT A and the right singular
vectors are eigenvectors of AAT .

b) For any matrix A, the matrices AAT and AT A have the same nonzero eigenvalues.

c) If S is symmetric, then the nonzero eigenvalues of S are its singular values.

d) If A does not have full column rank, then 0 is a singular value of A.

e) Suppose that A is invertible with singular values σ1, . . . ,σn. Then for c ≥ 0,
the singular values of A+ cIn are σ1 + c, . . . ,σn + c.

f) The right singular vectors of A are orthogonal to Nul(A).


