Math 218D-1: Homework \#12

due Wednesday, April 12, at 11:59pm

1. For each symmetric matrix S, find an orthogonal matrix Q and a diagonal matrix D such that $S=Q D Q^{T}$.
a) $\left(\begin{array}{rr}1 & -3 \\ -3 & 1\end{array}\right)$
b) $\left(\begin{array}{rr}1 & -3 \\ -3 & 9\end{array}\right)$
c) $\left(\begin{array}{rr}14 & 2 \\ 2 & 11\end{array}\right)$
d) $\left(\begin{array}{lll}7 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 5\end{array}\right)$
е) $\left(\begin{array}{rrr}1 & -8 & 4 \\ -8 & 1 & 4 \\ 4 & 4 & 7\end{array}\right)$
2. For each matrix S of Problem 1, decide if S is positive-semidefinite, and if so, compute its positive-semidefinite square root $\sqrt{S}=Q \sqrt{D} Q^{T}$. Verify that $(\sqrt{S})^{2}=S$.
Remark: Since \sqrt{S} is also symmetric, we have $S=\sqrt{S}^{T} \sqrt{S}$, so this is another way to factor a positive-semidefinite matrix as $A^{T} A$.
3. Consider the matrix

$$
S=\left(\begin{array}{lll}
7 & 2 & 0 \\
2 & 6 & 2 \\
0 & 2 & 5
\end{array}\right)
$$

of Problem 1(d). Write S in the form $\lambda_{1} u_{1} u_{1}^{T}+\lambda_{2} u_{2} u_{2}^{T}+\lambda_{3} u_{3} u_{3}^{T}$ for numbers $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and orthonormal vectors u_{1}, u_{2}, u_{3}.
4. Find all possible orthogonal diagonalizations

$$
\frac{1}{5}\left(\begin{array}{ll}
41 & 12 \\
12 & 34
\end{array}\right)=Q D Q^{T} .
$$

5. Let S be a symmetric matrix such that $S^{k}=0$ for some $k>0$. Show that $S=0$.
[Hint: Use HW9\#18.]
6. Let S be a symmetric orthogonal 2×2 matrix.
a) Show that $S= \pm I_{2}$ if it has only one eigenvalue.
[Hint: See HW9\#16.]
b) Suppose that S has two eigenvalues. Show that S is the matrix for the reflection over a line L in \mathbf{R}^{2}. (Recall that the reflection over a line L is given by $R_{L}=$ $I_{2}-2 P_{L^{\perp} .}$)
[Hint: Write S as $\lambda_{1} u_{1} u_{1}^{T}+\lambda_{2} u_{2} u_{2}^{T}$, and use the projection formula to write I_{2} and $P_{L^{\perp}}$ in this form as well. What is L ?]
7. a) Let S be a diagonalizable (over \mathbf{R}) $n \times n$ matrix with orthogonal eigenspaces: that is, eigenvectors with different eigenvalues are orthogonal. Prove that S is symmetric.
[Hint: choose orthonormal bases for each eigenspace.]
b) Let S be a matrix that can be written in the form

$$
S=\lambda_{1} q_{1} q_{1}^{T}+\lambda_{2} q_{2} q_{2}^{T}+\cdots+\lambda_{n} q_{n} q_{n}^{T}
$$

for some vectors $q_{1}, q_{2}, \ldots, q_{n}$. Prove that S is symmetric.
c) Let V be a subspace of \mathbf{R}^{n}, and let P_{V} be the projection matrix onto V. Use a) or \mathbf{b}) to prove that P_{V} is symmetric. (There is a proof in the notes using the formula $P_{V}=A\left(A^{T} A\right)^{-1} A^{T}$.)
8. For which matrices A is $S=A^{T} A$ positive-definite? If S is not positive-definite, find a vector x such that $x^{T} S x=0$. In any case, do not compute S !
a) $\left(\begin{array}{ll}1 & 1 \\ 2 & 1 \\ 0 & 3\end{array}\right)$
b) $\left(\begin{array}{lll}1 & 2 & 0 \\ 1 & 1 & 3\end{array}\right)$
c) $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$.
9. a) If S is positive-definite and C is invertible, show that $C S C^{T}$ is positive-definite.
b) If S and T are positive-definite, show that $S+T$ is positive-definite.
c) If S is positive-definite, show that S is invertible and that S^{-1} is positivedefinite.
[Hint: For \mathbf{a}) and \mathbf{b}) use the positive-energy characterization of positive-definiteness; for \mathbf{c}) use the positive-eigenvalue characterization.]
10. Consider the matrix

$$
S=\left(\begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{ll}
3 & 0 \\
0 & 4
\end{array}\right)\left(\begin{array}{rr}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right) .
$$

Without multiplying the matrices, find:
a) The determinant of S.
b) The eigenvalues of S.
c) The eigenvectors of S.
d) A reason why S is symmetric positive-definite.
11. Let S be a positive-definite matrix.
a) Show that the diagonal entries of S are positive.
[Hint: compute $e_{i}^{T} S e_{i}$.]
b) Show that the diagonal entries of S are all greater than or equal to the smallest eigenvalue of S.
[Hint: if not, apply a) to $S-a I_{n}$ for a diagonal entry a that is smaller than all eigenvalues.]
12. Decide if each statement is true or false, and explain why. All matrices are real.
a) A symmetric matrix is diagonalizable.
b) If A is any matrix then $A^{T} A$ is positive-semidefinite.
c) A symmetric matrix with positive determinant is positive-definite.
d) If $A=C D C^{-1}$ for a diagonal matrix D and a non-orthogonal invertible matrix C, then A is not symmetric.
e) A positive-definite matrix has the form $A^{T} A$ for a matrix A with full column rank.
f) The only positive-definite projection matrix is the identity.
g) All eigenvalues of a positive-definite symmetric matrix are positive real numbers.
13. For each symmetric matrix S, decide if S is positive-definite. If so, find its $L D L^{T}$ and Cholesky decompositions. Do not compute any eigenvalues!
a) $\left(\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right)$
b) $\left(\begin{array}{rrr}1 & 2 & 0 \\ 2 & 5 & -1 \\ 0 & -1 & 3\end{array}\right)$
c) $\left(\begin{array}{rrr}3 & -2 & 2 \\ -2 & 4 & 0 \\ 2 & 0 & 2\end{array}\right)$
d) $\left(\begin{array}{rrrr}1 & 1 & 2 & 1 \\ 1 & 3 & 6 & 3 \\ 2 & 6 & 14 & 8 \\ 1 & 3 & 8 & 9\end{array}\right)$
е) $\left(\begin{array}{rrrr}-1 & 2 & 3 & -2 \\ 2 & -3 & -8 & 4 \\ 3 & -8 & -4 & 6 \\ -2 & 4 & 6 & -1\end{array}\right)$
14. a) For each symmetric matrix S, compute the associated quadratic form $q(x)=$ $x^{T} S x$.

$$
\left(\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right) \quad\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad\left(\begin{array}{rrr}
1 & 0 & 3 \\
0 & -1 & 1 \\
3 & 1 & 0
\end{array}\right)
$$

b) Let A be a square matrix and let $S=\frac{1}{2}\left(A+A^{T}\right)$. Show that S is symmetric and that $x^{T} A x=x^{T} S x$. (This is why we only consider symmetric matrices when studying quadratic forms.)
15. For each quadratic form $q\left(x_{1}, x_{2}\right)$, i) write $q(x)$ in the form $x^{T} S x$ for a symmetric matrix S, ii) find coordinates y_{1}, y_{2} such that $q(x)=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}$, and iii) find the maximum and minimum values of $q\left(x_{1}, x_{2}\right)$ subject to the constraint $x_{1}^{2}+x_{2}^{2}=1$, and at which points (x_{1}, x_{2}) these values are attained.
a) $q\left(x_{1}, x_{2}\right)=14 x_{1}^{2}+4 x_{1} x_{2}+11 x_{2}^{2}$
b) $q\left(x_{1}, x_{2}\right)=\frac{1}{10}\left(21 x_{1}^{2}-6 x_{1} x_{2}+29 x_{2}^{2}\right)$
c) $q\left(x_{1}, x_{2}\right)=x_{1}^{2}-6 x_{1} x_{2}+x_{2}^{2}$
16. For the quadratic form

$$
q\left(x_{1}, x_{2}, x_{3}\right)=7 x_{1}^{2}+6 x_{2}^{2}+5 x_{3}^{2}+4 x_{1} x_{2}+4 x_{2} x_{3}
$$

find coordinates y_{1}, y_{2}, y_{3} such that $q(x)=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}$, and find the maximum and minimum values of $q\left(x_{1}, x_{2}, x_{3}\right)$ subject to the constraint $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1$, along with the points $\left(x_{1}, x_{2}, x_{3}\right)$ at which these values are attained.
17. Consider the quadratic form

$$
q\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+7 x_{3}^{2}-16 x_{1} x_{2}+8 x_{1} x_{3}+8 x_{2} x_{3} .
$$

Find all vectors $x=\left(x_{1}, x_{2}, x_{3}\right)$ maximizing $q(x)$ subject to $\|x\|=1$. (There are infinitely many!)

