Math 218D-1: Homework #10

due Wednesday, March 29, at 11:59pm

1. For each 2×2 matrix A, i) compute the characteristic polynomial using the formula $p(\lambda) = \lambda^2 - \text{Tr}(A)\lambda + \det(A)$. Use this to ii) find all real eigenvalues, and iii) find a basis for each eigenspace, using HW9#13 when applicable. iv) Draw and label each eigenspace. v) Is the matrix diagonalizable (over the real numbers)?

 a) \[
 \begin{pmatrix}
 1 & -2 \\
 1 & 4
 \end{pmatrix}
 \]
 b) \[
 \begin{pmatrix}
 -1 & 1 \\
 -9 & 5
 \end{pmatrix}
 \]
 c) \[
 \begin{pmatrix}
 3 & 0 \\
 0 & 3
 \end{pmatrix}
 \]
 d) \[
 \begin{pmatrix}
 1 & 1 \\
 -1 & 1
 \end{pmatrix}
 \]
 e) \[
 \begin{pmatrix}
 1 & 1 \\
 1 & 0
 \end{pmatrix}
 \]

2. For each matrix A, i) find all real eigenvalues of A, and ii) find a basis for each eigenspace. iii) Is the matrix diagonalizable (over the real numbers)?

 You will probably want to use a computer algebra system to find the roots of the characteristic polynomial. To do so in Sympy, you would type something like:

   ```python
   print(roots(-x**3 + 13/4*x + 3/2, multiple=True))
   ```

 # [-1.5, -0.5, 2.0]

 a) \[
 \begin{pmatrix}
 -1 & 7 & 5 \\
 0 & 1 & -2 \\
 0 & 1 & 4
 \end{pmatrix}
 \]
 b) \[
 \begin{pmatrix}
 7 & 12 & 12 \\
 -8 & -13 & -12 \\
 4 & 6 & 5
 \end{pmatrix}
 \]
 c) \[
 \begin{pmatrix}
 -14 & -7 & -12 \\
 6 & 2 & 3
 \end{pmatrix}
 \]

 Optional (if you want more practice):

 d) \[
 \begin{pmatrix}
 -11 & -54 & 10 \\
 -2 & -7 & 2 \\
 -21 & -90 & 20
 \end{pmatrix}
 \]
 e) \[
 \begin{pmatrix}
 2 & 0 & 0 \\
 0 & 2 & 0 \\
 0 & 0 & 2
 \end{pmatrix}
 \]

 f) \[
 \begin{pmatrix}
 13 & 18 & -18 \\
 -12 & -17 & 18 \\
 -4 & -6 & 7
 \end{pmatrix}
 \]
 g) \[
 \begin{pmatrix}
 -10 & 28 & -18 & -76 \\
 -1 & 9 & -6 & -2 \\
 4 & -8 & 7 & 26 \\
 0 & 2 & -2 & 4
 \end{pmatrix}
 \]

3. Let V be the plane $x + y + z = 0$, and let $R_V = I_3 - 2P_{V\perp}$ be the reflection matrix over V, as in HW9#5. Find an eigenbasis for R_V without doing any computations. Is R_V diagonalizable?
4. The Fibonacci numbers are defined recursively as follows:

\[F_0 = 0, \quad F_1 = 1, \quad F_{n+2} = F_{n+1} + F_n \quad (n \geq 0). \]

The first few Fibonacci numbers are 0, 1, 1, 2, 3, 5, 8, 13, \ldots In this problem, you will find a closed formula (as opposed to a recursive formula) for the \(n \)th Fibonacci number by solving a difference equation.

a) Let \(v_n = \left(\begin{array}{c} F_{n+1} \\ F_n \end{array} \right) \), so \(v_0 = \left(\begin{array}{c} 1 \\ 0 \end{array} \right) \), \(v_1 = \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \), etc. Find a state change matrix \(A \) such that \(v_{n+1} = Av_n \) for all \(n \geq 0 \).

b) Show that the eigenvalues of \(A \) are \(\lambda_1 = \frac{1}{2}(1 + \sqrt{5}) \) and \(\lambda_2 = \frac{1}{2}(1 - \sqrt{5}) \), with corresponding eigenvectors \(w_1 = \left(\begin{array}{c} -1 \\ \lambda_2 \end{array} \right) \) and \(w_2 = \left(\begin{array}{c} -1 \\ \lambda_1 \end{array} \right) \).

[Hint: Check that \(Aw_i = \lambda_i w_i \) using the relations \(\lambda_1 \lambda_2 = -1 \) and \(\lambda_1 + \lambda_2 = 1 \).]

c) Expand \(v_0 \) in this eigenbasis: that is, find \(x_1, x_2 \) such that \(v_0 = x_1 w_1 + x_2 w_2 \). (It helps to write \(x_1, x_2 \) in terms of \(\lambda_1, \lambda_2 \).)

d) Multiply \(v_0 = x_1 w_1 + x_2 w_2 \) by \(A^n \) to show that

\[F_n = \frac{\lambda_1^n - \lambda_2^n}{\lambda_1 - \lambda_2}. \]

e) Use this formula to explain why \(F_{n+1}/F_n \) approaches the golden ratio when \(n \) is large.
5. Pretend that there are three Red Box kiosks in Durham. Let \(x_t, y_t, z_t \) be the number of copies of Prognosis Negative at each of the three kiosks, respectively, on day \(t \). Suppose in addition that a customer renting a movie from kiosk \(i \) will return the movie the next day to kiosk \(j \), with the following probabilities:

<table>
<thead>
<tr>
<th>Returning to kiosk</th>
<th>Renting from kiosk</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 30% 40% 50%</td>
</tr>
<tr>
<td>2</td>
<td>2 30% 40% 30%</td>
</tr>
<tr>
<td>3</td>
<td>3 40% 20% 20%</td>
</tr>
</tbody>
</table>

For instance, a customer renting from kiosk 3 has a 50\% probability of returning it to kiosk 1.

a) Let \(v_t = (x_t, y_t, z_t) \). Find the state change matrix \(A \) such that \(v_{t+1} = Av_t \).

b) Diagonalize \(A \). What are its eigenvalues?

[Hint: \(A \) is a stochastic matrix, so you know one eigenvalue by HW9#14(c).]

c) If you start with a total of 1 000 copies of Prognosis Negative, how many of them will eventually end up at each kiosk? Does it matter what the initial state is?

This is an example of a stochastic process, and is an important application of eigenvalues and eigenvectors.

6. For each 2\(\times \)2 matrix \(A \) in Problem 1, if \(A \) is diagonalizable, find an invertible matrix \(C \) and a diagonal matrix \(D \) such that \(A = CDC^{-1} \).

7. For each matrix \(A \) in Problem 2, if \(A \) is diagonalizable, find an invertible matrix \(C \) and a diagonal matrix \(D \) such that \(A = CDC^{-1} \).

8. Consider the matrix

\[
A = \begin{pmatrix}
4 & -3 & 0 \\
2 & -1 & 0 \\
1 & -1 & 1
\end{pmatrix}.
\]

a) Find a diagonal matrix \(D \) and an invertible matrix \(C \) such that \(A = CDC^{-1} \).

b) Find a different diagonal matrix \(D' \) and a different invertible matrix \(C' \) such that \(A = C'D'C'^{-1} \).

[Hint: Try re-ordering the eigenvalues.]
9. Compute the matrix with eigenvalues 0, 1, 2 and corresponding eigenvectors
\[
\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}.
\]
(There is only one such matrix.)

10. Let \(A\) and \(B\) be \(n \times n\) matrices, and let \(v_1, \ldots, v_n\) be a basis of \(\mathbb{R}^n\).
 a) Suppose that each \(v_i\) is an eigenvector of both \(A\) and \(B\). Show that \(AB = BA\).
 b) Suppose that each \(v_i\) is an eigenvector of both \(A\) and \(B\) with the same eigenvalue. Show that \(A = B\).
 [Hint: use the matrix form of diagonalization.]

11. Let \(A\) be an \(n \times n\) matrix, and let \(C\) be an invertible \(n \times n\) matrix. Prove that the characteristic polynomial of \(CAC^{-1}\) equals the characteristic polynomial of \(A\).
 In particular, \(A\) and \(CAC^{-1}\) have the same eigenvalues, the same determinant, and the same trace. They are called similar matrices.

12. Let \(A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}\). Find a closed formula for \(A^n\): that is, an expression of the form
\[
A^n = \begin{pmatrix} a_{11}(n) & a_{12}(n) \\ a_{21}(n) & a_{22}(n) \end{pmatrix},
\]
where \(a_{ij}(n)\) is a function of \(n\).

13. A certain \(2 \times 2\) matrix \(A\) has eigenvalues 1 and 2. The eigenspaces are shown in the picture below.
 a) Draw \(Av\), \(A^2v\), and \(Aw\).
 b) Compute the limit of \(A^n v/\|A^n v\|\) as \(n \to \infty\).
14. A certain diagonalizable 2×2 matrix A is equal to CDC^{-1}, where C has columns w_1, w_2 pictured below, and $D = \begin{pmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$.

a) Draw $C^{-1}v$ on the left.

b) Draw $DC^{-1}v$ on the left.

c) Draw $Av = CDC^{-1}v$ on the right.

d) What happens to A^nv as $n \to \infty$?