MATH 218D-1
 MIDTERM EXAMINATION 2

Name	Duke Email	@duke.edu

Please read all instructions carefully before beginning.

- Do not open this test booklet until you are directed to do so.
- You have 75 minutes to complete this exam.
- If you finish early, go back and check your work.
- The graders will only see the work on the printed pages (front and back). You may use other scratch paper, but the graders will not see anything written there.
- You may use a simple calculator for doing arithmetic, but you should not need one. You may bring a 3×5-inch note card covered with anything you want. All other materials and aids are strictly prohibited.
- For full credit you must show your work so that your reasoning is clear, unless otherwise indicated.
- Do not spend too much time on any one problem. Read them all through first and attack them in an order that allows you to make the most progress.
- Good luck!

[Hint: this is a joke.]

Problem 1.

Consider the subspace V of \mathbf{R}^{4} defined by the equation

$$
x_{1}-x_{2}+2 x_{3}-6 x_{4}=0 .
$$

a) Compute an orthogonal basis for V.

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{r}
-1 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{r}
1 \\
-1 \\
2 \\
1
\end{array}\right)\right\}
$$

b) Compute an orthogonal basis for V^{\perp}.

$$
\left\{\left(\begin{array}{r}
1 \\
-1 \\
2 \\
-6
\end{array}\right)\right\}
$$

c) Compute the projection matrix P_{V}.

$$
P_{V}=\frac{1}{42}\left(\begin{array}{rrrr}
41 & 1 & -2 & 6 \\
1 & 41 & 2 & -6 \\
-2 & 2 & 38 & 12 \\
6 & -6 & 12 & 6
\end{array}\right)
$$

d) Compute the orthogonal projection of the vector $b=(1,0,1,-3)$ onto V.

$$
b_{V}=\frac{1}{2}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)
$$

e) The distance from $(1,0,1,-3)$ to V is $\sqrt{2} 1 / \sqrt{2}$.

Problem 2.

Applying the Gram-Schmidt procedure to a certain list of vectors v_{1}, v_{2}, v_{3} in \mathbf{R}^{4} yields the vectors

$$
\left(\begin{array}{r}
3 \\
1 \\
-1 \\
3
\end{array}\right)=u_{1}=v_{1} \quad\left(\begin{array}{r}
1 \\
3 \\
3 \\
-1
\end{array}\right)=u_{2}=v_{2}+2 u_{1} \quad\left(\begin{array}{r}
-3 \\
1 \\
1 \\
3
\end{array}\right)=u_{3}=v_{3}-\frac{3}{2} u_{1}+\frac{1}{2} u_{2} .
$$

The following questions are easier if you do not compute v_{2} and v_{3}.
a) $\frac{v_{1} \cdot v_{2}}{v_{1} \cdot v_{1}}=-2$
b) What is the orthogonal projection of v_{3} onto $V_{2}=\operatorname{Span}\left\{u_{1}, u_{2}\right\}$?

$$
\left(v_{3}\right)_{V_{2}}=3 / 2 u_{1}+-1 / 2 u_{2}
$$

c) What is the orthogonal projection of $b=(0,5,-5,0)$ onto $V=\operatorname{Span}\left\{v_{1}, v_{2}, v_{3}\right\}$?

$$
b_{V}=\frac{1}{2}\left(\begin{array}{r}
3 \\
1 \\
-1 \\
3
\end{array}\right)
$$

d) Let A be the matrix with columns v_{1}, v_{2}, v_{3}. The QR decomposition of A is

$$
\left(\begin{array}{ccc}
\mid & \mid & \mid \\
v_{1} & v_{2} & v_{3} \\
\mid & \mid & \mid
\end{array}\right)=\frac{1}{2 \sqrt{5}}\left(\begin{array}{rrr}
3 & 1 & -3 \\
1 & 3 & 1 \\
-1 & 3 & 1 \\
3 & -1 & 1
\end{array}\right)\left(\begin{array}{rrr}
2 \sqrt{5} & -4 \sqrt{5} & 3 \sqrt{5} \\
0 & 2 \sqrt{5} & -\sqrt{5} \\
0 & 0 & 2 \sqrt{5}
\end{array}\right)
$$

e) The least-squares solution of $A \widehat{x}=b$ (with A and b as above) is

$$
\widehat{x}=\frac{1}{2}\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Problem 3.

a) Compute the characteristic polynomial of the matrix

$$
\left(\begin{array}{rrr}
2 & 3 & -6 \\
-6 & -7 & 12 \\
-3 & -3 & 5
\end{array}\right) .
$$

Do not factor your answer.

$$
p(\lambda)=-\lambda^{3}+3 \lambda+2
$$

Now we switch matrices to avoid carry-through error. The matrix

$$
A=\left(\begin{array}{ccc}
-7 & -18 & 30 \\
-12 & -37 & 60 \\
-9 & -27 & 44
\end{array}\right)
$$

has characteristic polynomial $p(\lambda)=-(\lambda+1)^{2}(\lambda-2)$.
b) The eigenvalues of A are $\lambda_{1}=-1$ and $\lambda_{2}=2$.
c) Compute a basis for each eigenspace. Scale your eigenvectors to have integer (wholenumber) entries.

$$
\lambda_{1}:\left\{\left(\begin{array}{r}
-3 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
5 \\
0 \\
1
\end{array}\right)\right\} \quad \lambda_{2}:\left\{\left(\begin{array}{l}
2 \\
4 \\
3
\end{array}\right)\right\}
$$

d) Solve the difference equation

$$
v_{k+1}=A v_{k} \quad v_{0}=\left(\begin{array}{l}
0 \\
3 \\
2
\end{array}\right) .
$$

$$
v_{k}=\left(\begin{array}{l}
-2(-1)^{k}+2 \cdot 2^{k} \\
-(-1)^{k}+4 \cdot 2^{k} \\
-(-1)^{k}+3 \cdot 2^{k}
\end{array}\right)
$$

Problem 4.

Certain vectors v_{1} and v_{2} are drawn below.

Draw and label:
a) $\frac{v_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$
b) $v_{2}-\frac{v_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$
c) The orthogonal complement of $V=\operatorname{Span}\left\{v_{1}\right\}$.

Problem 5.

a) Let A be an $m \times n$ matrix and let $b \in \mathbf{R}^{n}$ be a vector. Explain why b can be expressed as a sum of a vector in $\operatorname{Row}(A)$ and a vector in $\operatorname{Nul}(A)$.
Let $V=\operatorname{Row}(A)$. Then $V^{\perp}=\operatorname{Nul}(A)$, and $b_{V}+b_{V \perp}=b$.
b) Performing the following sequence of row operations on a matrix A results in a matrix U in reduced row echelon form:

$$
\text { A } \quad R_{1}+=2 R_{2}, R_{2} \times=3, R_{1}-=R_{3}, R_{2} \longleftrightarrow R_{3} \quad U=\left(\begin{array}{lll}
1 & 3 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

What is $\operatorname{det}(A)$?
$\operatorname{det}(A)=0$
c) Consider the subspace

$$
V=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
7 \\
2 \\
4
\end{array}\right),\left(\begin{array}{c}
3 \\
3 \\
3 \\
-1
\end{array}\right)\right\}
$$

and the projection matrix P_{V}. There exists an invertible matrix C such that $P_{V}=$ $C D C^{-1}$, where D is the diagonal matrix

$$
D=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

d) Suppose that λ is an eigenvalue of A. Which of the following statements can you conclude? Fill in the circles of all that apply.
$A-\lambda I_{n}$ has a free variable.
There exists a vector $v \in \mathbf{R}^{n}$ such that $A v=\lambda \nu$.
λ^{2} is an eigenvalue of A^{2}.
$A=C D C^{-1}$ for an invertible matrix C and a diagonal matrix D.
0 is an eigenvalue of $A-\lambda I_{n}$.
λ is a zero of the characteristic polynomial of A.

Problem 6.

Give examples of matrices with each of the following properties. If no such matrix exists, explain why. All matrices in this problem have real entries.
a) A diagonalizable 2×2 matrix with characteristic polynomial $p(\lambda)=\lambda^{2}-\lambda$. There are many answers. One is

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) .
$$

b) An invertible 2×2 matrix with characteristic polynomial $p(\lambda)=\lambda^{2}-\lambda$. This is not possible: $\operatorname{det}(A)=p(0)=0$.
c) A matrix A such that $b_{V}=b$, where $b=(1,2,1)$ and $V=\operatorname{Col}(A)$.

Any matrix with b as a column will work.
d) A 2×2 symmetric matrix A such that $\operatorname{Col}(A)=\operatorname{Nul}(A)$.

This is not possible: if A is symmetric then $\operatorname{Col}(A)=\operatorname{Row}(A)=\operatorname{Nul}(A)^{\perp}$.
e) A 2×2 matrix with no (real) eigenvectors.

There are many answers. One is

$$
\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

