1. **Some simple examples**

For each of the following matrices A,

i) Find the characteristic polynomial $p(\lambda) = \det(A - \lambda I_2)$.

ii) Find all the eigenvalues by solving $p(\lambda) = 0$.

iii) For each eigenvalue λ_i, find a basis of the associated eigenspace $\text{Nul}(A - \lambda_i I_2)$.

iv) An $n \times n$ matrix A is diagonalizable if and only if the dimensions of the eigenspaces add up to n. For these matrices, you may have one or two eigenspaces, depending on how many different roots $p(\lambda)$ has. Is the matrix A diagonalizable? Is the matrix A diagonal?

$$
\begin{align*}
\text{a)} & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
\text{b)} & \begin{pmatrix} 2 & 0 \\ 0 & -2 \end{pmatrix} \\
\text{c)} & \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \\
\text{d)} & \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \\
\text{e)} & \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \\
\text{f)} & \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \\
\text{g)} & \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}
\end{align*}
$$
Solution.

a) The matrix \[
\begin{pmatrix}
1 & 0 \\
0 & 1 \\
\end{pmatrix}
\] has characteristic polynomial \((\lambda - 1)^2\), the only eigenvalue is \(\lambda_1 = 1\), the \(\lambda_1\)-eigenspace is \(\mathbb{R}^2\) with basis \{(1, 0), (0, 1)\}, the matrix is diagonal and diagonalizable.

b) The matrix \[
\begin{pmatrix}
2 & 0 \\
0 & -2 \\
\end{pmatrix}
\] has characteristic polynomial \((\lambda - 2)(\lambda + 2)\), the eigenvalues are \(\lambda_1 = 2\) and \(\lambda_2 = -2\), the \(\lambda_1\)-eigenspace is \(\text{Span}\{(1, 0)\}\) and the \(\lambda_2\)-eigenspace is \(\text{Span}\{(0, 1)\}\), the matrix is diagonal and diagonalizable.

c) The matrix \[
\begin{pmatrix}
0 & 0 \\
0 & 0 \\
\end{pmatrix}
\] has characteristic polynomial \(\lambda^2\), the only eigenvalue is \(\lambda_1 = 0\), the \(\lambda_1\)-eigenspace is \(\mathbb{R}^2\), the matrix is diagonal and diagonalizable.

d) The matrix \[
\begin{pmatrix}
0 & 1 \\
1 & 0 \\
\end{pmatrix}
\] has characteristic polynomial \((\lambda - 1)(\lambda + 1)\), the eigenvalues are \(\lambda_1 = 1\) and \(\lambda_2 = -1\), the \(\lambda_1\)-eigenspace is \(\text{Span}\{(1, 1)\}\) and the \(\lambda_2\)-eigenspace is \(\text{Span}\{(1, -1)\}\), the matrix is not diagonal but is diagonalizable.

e) The matrix \[
\begin{pmatrix}
1 & 1 \\
1 & 1 \\
\end{pmatrix}
\] has characteristic polynomial \(\lambda(\lambda - 2)\), the eigenvalues are \(\lambda_1 = 0\) and \(\lambda_2 = 2\), the \(\lambda_1\)-eigenspace is \(\text{Span}\{(1, -1)\}\) and the \(\lambda_2\)-eigenspace is \(\text{Span}\{(1, 1)\}\), the matrix is not diagonal but is diagonalizable.

f) The matrix \[
\begin{pmatrix}
2 & 1 \\
0 & 2 \\
\end{pmatrix}
\] has characteristic polynomial \((\lambda - 2)^2\), the only eigenvalue is \(\lambda_1 = 2\), the \(\lambda_2\)-eigenspace is \(\text{Span}\{(1, 0)\}\), the matrix is neither diagonal nor diagonalizable.

g) The matrix \[
\begin{pmatrix}
2 & 1 \\
-1 & 2 \\
\end{pmatrix}
\] has characteristic polynomial \(\lambda^2 - 4\lambda + 5\). Since \(4^2 - 4 \cdot 5 < 0\), this polynomial has no real root. This means it has no real eigenvalues, and cannot be diagonalized via real matrices. It is not diagonal.
2. A 2×2 diagonalization

Consider the matrix \(A = \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix} \).

a) Compute the characteristic polynomial \(p(\lambda) = \det(A - \lambda I_2) \).

b) Using the quadratic formula, find the two solutions to \(p(\lambda) = 0 \). The two solutions, \(\lambda_1 \) and \(\lambda_2 \), are the two eigenvalues of \(A \).

c) Find the eigenvector \(v_1 = (x_1, y_1) \) by solving the eigenvector equation
\[
(A - \lambda_1 I_2)v_1 = 0
\]
Note that there is more than one solution—choose any non-zero solution.

d) Find the eigenvector \(v_2 = (x_2, y_2) \) by solving the eigenvector equation
\[
(A - \lambda_2 I_2)v_2 = 0.
\]

e) Diagonalize \(A \), by making a matrix of eigenvalues \(D = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} \), a matrix of eigenvectors \(C = \begin{pmatrix} v_1 & v_2 \end{pmatrix} \), and confirming that \(A = CDC^{-1} \) by multiplying these three matrices.

f) Compute the vector \(A^n(1, 2) \).

Hint: Find scalars \(c_1, c_2 \) so that \((1, 2) = c_1 v_1 + c_2 v_2 \). It may help to use the matrix \(C^{-1} \) to do this. Then use the formula \(A^n(c_1 v_1 + c_2 v_2) = c_1 A^n v_1 + c_2 A^n v_2 \).

g) When \(n \) is very large, \(\|A^{n+1}(1, 2)\|/\|A^n(1, 2)\| \) is approximately _____.

h) When \(n \) is very large, \(\|A^{n+1}(1, 1)\|/\|A^n(1, 1)\| \) is approximately _____. (this should be easier than g.)

i) If you were given a random vector \(w \), what would you expect \(\|A^{n+1}w\|/\|A^nw\| \) to approximate when \(n \) is very large?
Solution.

a) The characteristic polynomial is \(\lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2) \)

b) The two eigenvalues are \(\lambda_1 = 1 \) and \(\lambda_2 = 2 \).

c) A \(\lambda_1 = 1 \) eigenvector is \((1, 1)\).

d) A \(\lambda_2 = 2 \) eigenvector is \((2, 3)\).

e) \(D = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}, A = \begin{pmatrix} 1 & 2 \\ 0 & 2 \end{pmatrix}\begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix}^{-1} \)

f) It is not hard to “guess” that \((1, 2) = -(1, 1) + (2, 3) \), i.e. \(c_1 = -1, c_2 = 1 \). If you already computed the inverse \(C^{-1} = \begin{pmatrix} 3 & -2 \\ -1 & 1 \end{pmatrix} \), you could also do \((c_1, c_2) = C^{-1}(1, 2) = (3, -1) + 2(-2, 1) = (-1, 1)\).

This means that \(A^n(1, 2) = A^n(-(1, 1) + (2, 3)) = -\lambda_1^n(1, 1) + \lambda_2^n(2, 3) = -(1, 1) + 2^n(2, 3) \).

g) When \(n \) is very large, the ratio \(\frac{\|A^{n+1}(1, 2)\|^2}{\|A^n(1, 2)\|^2} = \frac{(2-2^{n+1}+1)^2 + (3-2^{n+1}+1)^2}{(2-2^n+1)^2 + (3-2^n+1)^2} \) is approximately 4 (the +1’s are negligible compared to the large \(2^n \) terms). This means that the ratio \(\frac{\|A^{n+1}(1, 2)\|}{\|A^n(1, 2)\|} \) is approximately 2.

h) For any \(n \), \(\|A^{n+1}(1, 1)\|/\|A^n(1, 1)\| \) is not just approximately, but exactly, equal to 1.

i) If you were given a random vector \(w \), you would expect \(\|A^{n+1}w\|/\|A^nw\| \) to be approximately 2 when \(n \) is very large - most vectors are not in the \(\lambda_1 = 1 \) eigenspace, and for any vector not in that eigenspace, the same logic as in g) would apply.
3. **Some 3 × 3 characteristic polynomials**

Compute the characteristic polynomials and eigenvalues of the matrices

\[
A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 2 & -1 \\ -1 & 1 & 0 \end{pmatrix}, \quad B = \begin{pmatrix} -1 & 2 & -1 \\ -2 & 3 & -1 \\ -1 & 1 & 0 \end{pmatrix}.
\]

Decide if each matrix is diagonalizable, and if it is, diagonalize it.

Solution.

Both matrices have characteristic polynomial \(\lambda^3 - 2\lambda^2 + \lambda \). This factors as \((\lambda - 1)^2\lambda\), so both polynomials have eigenvalues 1 and 0, with 1 being a repeated eigenvalue. The matrix \(A\) is diagonalizable:

\[
A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}^{-1}.
\]

The matrix \(B\) is not, since the 1-eigenspace, \(\text{Nul}(B - I)\), is 1-dimensional, and the 0-eigenspace, \(\text{Nul}(B)\), is also 1-dimensional. This means you can find at most 2 linearly independent eigenvectors, not the 3 you need for diagonalization.
4. **Traces and determinants**

Recall that the trace $\text{Tr}(A)$ is the sum of the diagonal entries of A.

a) For each of the matrices in problem 1(a)–(f), factor $p(\lambda) = (\lambda - \lambda_1)(\lambda - \lambda_2)$. Verify that

$$\text{Tr}(A) = \lambda_1 + \lambda_2 \text{ and } \det(A) = \lambda_1 \cdot \lambda_2.$$

b) For any $n \times n$ matrix, the polynomial $p(\lambda) = \det(A - \lambda I_n)$ can be factored as

$$p(\lambda) = (-1)^n(\lambda - \lambda_1) \cdots (\lambda - \lambda_n).$$

Verify that

$$\det(A) = \lambda_1 \cdots \lambda_n.$$

Hint: What happens to $\det(A - \lambda I_n)$ when you set $\lambda = 0$? What happens to $(-1)^n(\lambda - \lambda_1) \cdots (\lambda - \lambda_n)$ when you set $\lambda = 0$?

c) The determinant $\det(A)$ has another product formula:

$$\det(A) = (-1)^k d_1 \cdots d_n,$$

when the A has REF with pivot entries d_1, \ldots, d_n, found using Gaussian elimination w/o row scaling and with k row swaps. Even though this formula looks quite similar to the formula of b), eigenvalues and pivots are not at all the same.

Find an example of a 2×2 matrix where the pivots d_1, d_2 are not the same as the eigenvalues λ_1, λ_2.

d) **(Challenge)** For any $n \times n$ matrix, show that $\text{Tr}(A) = \lambda_1 + \cdots + \lambda_n$.
Solution.

a) For example, for a), \(\lambda_1 = 1 \) and \(\lambda_2 = 1 \). Therefore \(\text{Tr}(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) = 1 + 1 = 2 \), while \(\det(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) = 1 \cdot 1 = 1 \). For a non-diagonal example, look at d) - the eigenvalues are \(\lambda_1 = 1, \lambda_2 = -1 \), \(\text{Tr}(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}) = 1 + (-1) = 0 \) while \(\det(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}) = 1 \cdot (-1) = -1 \).

b) For any \(n \times n \) matrix, the polynomial \(p(\lambda) = \det(A - \lambda I_n) \) can be factored as

\[
p(\lambda) = (-1)^n(\lambda - \lambda_1) \cdots (\lambda - \lambda_n).
\]

When you set \(\lambda = 0 \) in \(\det(A - \lambda I_n) \), you get \(\det(A) \). When you set \(\lambda = 0 \) in \((-1)^n(\lambda - \lambda_1) \cdots (\lambda - \lambda_n)\), you get \((-1)^n(-\lambda_1) \cdots (-\lambda_n) = \lambda_1 \cdots \lambda_n\). Therefore \(\det(A) = \lambda_1 \cdots \lambda_n \).

c) The determinant \(\det(A) \) has another product formula:

\[
\det(A) = (-1)^k d_1 \cdots d_n,
\]

when the \(A \) has REF with pivot entries \(d_1, \ldots, d_n \), found using Gaussian elimination w/o row scaling and with \(k \) row swaps. Even though this formula looks quite similar to the formula of b), eigenvalues and pivots are not at all the same.

An example of a \(2 \times 2 \) matrix where the pivots \(d_1, d_2 \) are not the same as the eigenvalues \(\lambda_1, \lambda_2 \) is given by \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \). This matrix has \(p(\lambda) = \lambda^2 - \lambda - 1 \), hence has eigenvalues \(\lambda_1, \lambda_2 = \frac{1 + \sqrt{5}}{2}, \frac{1 - \sqrt{5}}{2} \). But the REF, with one row swap, is \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \), with pivots 1, 1. This gives two different formula for the determinant\(\det(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}) = -1 \cdot 1 = \frac{1 + \sqrt{5}}{2} \cdot \frac{1 - \sqrt{5}}{2} \).

d) For any \(n \times n \) matrix, we will show that \(\text{Tr}(A) = \lambda_1 + \cdots + \lambda_n \). We’ll do the same strategy as in b), but the details are much trickier.

\(p(\lambda) \)-side:

If you expand \(p(\lambda) = (-1)^n(\lambda - \lambda_1) \cdots (\lambda - \lambda_n) \) into \(p(\lambda) = (-1)^n \lambda^n + (\text{terms}) \lambda^{n-1} + \cdots \), the coefficient of \(\lambda^{n-1} \) is \(\lambda_1 + \cdots + \lambda_n \).

For example, \((-1)^3(\lambda - \lambda_1)(\lambda - \lambda_2)(\lambda - \lambda_3) = (-1)^3(\lambda^3 - (\lambda_1 + \lambda_2 + \lambda_3)\lambda^2 + (\lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1)\lambda - \lambda_1 \lambda_2 \lambda_3 \).

\(\det(A - \lambda I) \)-side:

What is the coefficient of \(\lambda^{n-1} \) for \(\det(A - \lambda I) \)? Well, you have to think very carefully about the cofactor expansion, or really the formula you get when you do cofactor expansion \(n \) times, all the way to \(1 \times 1 \) matrices. The only term in the cofactor expansion which has a possibility of having a \(\lambda^{n-1} \) term is the product \((a_{11} - \lambda) \cdots (a_{nn} - \lambda) \), coming from the \((1, 1) \)-cofactor \(n \) times.
For example, when \(n = 3 \),
\[
\det\begin{pmatrix}
(a_{11} - \lambda) & a_{12} & a_{13} \\
(a_{21} - \lambda) & a_{22} & a_{23} \\
(a_{31}) & (a_{32}) & (a_{33} - \lambda)
\end{pmatrix} = (a_{11} - \lambda)\det\begin{pmatrix}
(a_{22} - \lambda) & a_{23} \\
(a_{32}) & (a_{33} - \lambda)
\end{pmatrix} \\
- a_{21} \det\begin{pmatrix}
a_{12} & a_{13} \\
(a_{32}) & (a_{33} - \lambda)
\end{pmatrix} \\
+ a_{31} \det\begin{pmatrix}
a_{12} & a_{13} \\
(a_{22} - \lambda) & a_{23}
\end{pmatrix}.
\]

Both \(\det\begin{pmatrix}
a_{12} & a_{13} \\
(a_{32}) & (a_{33} - \lambda)
\end{pmatrix} \) and \(\det\begin{pmatrix}
a_{12} & a_{13} \\
(a_{22} - \lambda) & a_{23}
\end{pmatrix} \) are degree one polynomials in \(\lambda \), with no \(\lambda^{n-1} = \lambda^2 \) term. The first term
\[
(a_{11} - \lambda)\det\begin{pmatrix}
(a_{22} - \lambda) & a_{23} \\
(a_{32}) & (a_{33} - \lambda)
\end{pmatrix}
\]
equals \((a_{11} - \lambda)(a_{22} - \lambda)(a_{33} - \lambda) - a_{32}a_{23}\), and only the first part of this, \((a_{11} - \lambda)(a_{22} - \lambda)(a_{33} - \lambda)\), can have \(\lambda^2 \) terms.

Back to discussing general \(n \). Since the \(\lambda^{n-1} \) term of \(\det(A - \lambda I_n) \) is the same as the \(\lambda^{n-1} \) term of \((a_{11} - \lambda) \cdots (a_{nn} - \lambda)\),
\[
\det(A - \lambda I_n) = (-1)^{n-1}\lambda^n + (a_{11} + \cdots + a_{nn})\lambda^{n-1} + \cdots.
\]

Conclusion: We then compare the \(\lambda^{n-1} \)-terms on both sides of
\[
\det(A - \lambda I_n) = (-1)^n(\lambda - \lambda_1) \cdots (\lambda - \lambda_n),
\]
which gives
\[
a_{11} + \cdots + a_{nn} = \lambda_1 + \cdots + \lambda_n,
\]
i.e.
\[
\text{Tr}(A) = \lambda_1 + \cdots + \lambda_n.
\]
5. Linear independence of eigenvectors

a) Consider a matrix A with two distinct eigenvalues $\lambda_1 \neq \lambda_2$, with associated eigenvectors v_1 and v_2. Show that v_1 is not a scalar multiple of v_2.

Hint: Suppose they were scalar multiples, $v_1 = cv_2$. What happens when you multiply this equation by A?

b) Consider a matrix A with three distinct eigenvalues $\lambda_1, \lambda_2, \lambda_3$, with associated eigenvectors v_1, v_2 and v_3. Show that v_1, v_2, and v_3 are linearly independent.

Hint: Suppose they were dependent, $a_1v_1 + a_2v_2 + a_3v_3 = 0$, with $a_3 \neq 0$. Multiply this equation by A. Can you get a new linear dependence where $a_3 = 0$?

Solution.

a) Consider a matrix A with two distinct eigenvalues $\lambda_1 \neq \lambda_2$, with associated eigenvectors v_1 and v_2. We will show that v_1 is not a scalar multiple of v_2.

Suppose that they were scalar multiples $v_1 = cv_2$. Note that $c \neq 0$, since the eigenvector v_1 can’t be 0. Then $Av_1 = A(cv_2) = cAv_2$. Using the eigenvector equations $Av_1 = \lambda_1 v_1$ and $Av_2 = \lambda_2 v_2$, this becomes $\lambda_1 v_1 = c\lambda_2 v_2$. Substituting $v_1 = cv_2$, this becomes $\lambda_1 (cv_2) = c\lambda_2 v_2$. As v_2 and c are not the zero vector/scalar, this implies $\lambda_1 = \lambda_2$, a contradiction.

Therefore v_1 and v_2 are not scalar multiples.

b) Consider a matrix A with three distinct eigenvalues $\lambda_1, \lambda_2, \lambda_3$, with associated eigenvectors v_1, v_2 and v_3. We will show that v_1, v_2, and v_3 are linearly independent.

Suppose they were linearly dependent: we would have an equation

$$av_1 + bv_2 + cv_3 = 0,$$

where at least two of the scalars a, b, c are non-zero. If one of them is zero, we are actually in the situation of a) - we already checked that this was impossible.

Multiplying by A, we obtain another equation

$$\lambda_1 av_1 + \lambda_2 bv_2 + \lambda_3 cv_3 = 0.$$

Now, we may assume that $\lambda_1 \neq 0$ (if it is zero, re-order the eigenvalues - the eigenvalues can’t all be zero, since they are 3 distinct numbers). We can subtract λ_1 times the equation $av_1 + bv_2 + cv_3 = 0$ from $\lambda_1 av_1 + \lambda_2 bv_2 + \lambda_3 cv_3 = 0$, to get

$$(\lambda_2 - \lambda_1) bv_2 + (\lambda_3 - \lambda_1) cv_3 = 0.$$

Since all the eigenvalues were distinct, the coefficients $(\lambda_2 - \lambda_1)b$ and $(\lambda_3 - \lambda_1)c$ are both nonzero. Therefore the eigenvectors v_2 and v_3 are scalar multiples of each other. But this is impossible, due to a)!

Since all cases give rise to contradictions, we may conclude that the assumption that v_1, v_2, and v_3 are linearly dependent is impossible. In other words, any three eigenvectors with distinct eigenvalues must be linearly independent.