
Math 218D Problem Session: Week 6

Answer Key

1. Projection onto a line
For each of the following pairs of vectors b and v,
(1) compute the orthogonal projection of b onto the line V = Span{v},
(2) draw V and the three vectors b, bV , bV⊥ , and
(3) compute the projection matrix PV = vvT/(vT v).

a) b =
�

1
1

�

, v =
�

1
0

�

b) b =
�

0
2

�

, v =
�

1
1

�

c) b =

 

1
2
3

!

, v =

 

1
1
−1

!

Solution.

a) bV =
b · v
v · v

v =
�

1
0

�

, bV⊥ = b− bV =
�

0
1

�

, PV =
vvT

vT v
=
�

1 0
0 0

�

.

V

b

bV

bV⊥

b) bV =
b · v
v · v

v =
�

1
1

�

, bV⊥ = b− bV =
�

−1
1

�

, PV =
vvT

vT v
=

1
2

�

1 1
1 1

�

.

V

b

bV

bV⊥

c) bV =
b · v
v · v

v =

 

0
0
0

!

, bV⊥ = b− bV =

 

1
2
3

!

, PV =
1
3

 

1 1 −1
1 1 −1
−1 −1 1

!

.
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2. Planes and normal vectors
The subspace V = Span{(1, 1,2), (1,3, 1)} of R3 is a plane.

a) Place the vectors (1,1, 2), (1, 3,1) into the rows of a 2×3 matrix A—this means
that Row(A) = V . Find a basis for Nul(A). Since

V⊥ = Row(A)⊥ = Nul(A),

you have found a basis vector v = (a, b, c) for the line V⊥.
In other words, you have found a basis for V⊥ by solving the two orthogo-

nality equations

(a, b, c) · (1, 1,2) = a+ b+ 2c = 0,

(a, b, c) · (1, 3,1) = a+ 3b+ c = 0.

b) Confirm that V is the plane {(x , y, z) ∈ R3 : ax + b y + cz = 0}, by showing
that both (1, 1,2) and (1, 3,1) solve this equation. The coefficients of a plane’s
equation make a normal vector for the plane.

c) Find the orthogonal decomposition b = bV + bV⊥ of the vector b = (1, 1,1)
with respect to the plane V and the orthogonal line V⊥.
Hint: It is easier to compute bV⊥ , as it is the projection of b onto the line V⊥

spanned by the vector v = (a, b, c).

Solution.
a) We perform Gauss–Jordan elimination:

A=
�

1 1 2
1 3 1

�

RREF
�

1 0 5/2
0 1 −1/2

�

.

The null space of A is spanned by (−5/2,1/2, 1). Thus {(−5/2,1/2,1)} is a
basis for V⊥.

b) The equation−5
2 x+ 1

2 y+z = 0 is satisfied for (x , y, z) = (1, 1,2) and (x , y, z) =
(1, 3,1).

c) We find bV⊥ first. We clear fractions by noting that V⊥ is spanned by (−5, 1,2) =
2(−5/2,1/2,1). By the formula for projection onto a line, we have

bV⊥ =

 

1
1
1

!

·

 −5
1
2

!

 −5
1
2

!

·

 −5
1
2

!

 −5
1
2

!

=
−2
30

 −5
1
2

!

= −
1
15

 −5
1
2

!

.

Then we compute

bV = b− bV⊥ =

 

1
1
1

!

−

 

−
1
15

 −5
1
2

!!

=

 

10/15
16/15
17/15

!

=
1

15

 

10
16
17

!

.



MATH 218D PROBLEM SESSION: WEEK 6 3

3. Orthogonal projections, under the hood
Consider the plane

V = Span

















1
1
1
1






,







1
2
3
4

















in R4. We will find the orthogonal projection of b = (1,−1,−3,−5) onto V , “by
hand.” This is the vector bV ∈ V satisfying bV⊥ = b− bV ∈ V⊥.

Since bV is in V , there exist scalars bx1, bx2 such that

bV = bx1







1
1
1
1






+ bx2







1
2
3
4






.

We will compute the orthogonal projection by solving for these scalars.
The vector bV⊥ is orthogonal to every vector in V . In particular, it is orthogonal

to both (1, 1,1, 1) and (1, 2,3, 4). We get two equations:

(1,1, 1,1) · bV⊥ = 0,

(1,2, 3,4) · bV⊥ = 0.

Expanding

bV⊥ = b− bV =







1
−1
−3
−5






− bx1







1
1
1
1






− bx2







1
2
3
4






,

we can rewrite these two equations as






1
1
1
1






·






bx1







1
1
1
1






+ bx2







1
2
3
4












=







1
1
1
1






·







1
−1
−3
−5













1
2
3
4






·






bx1







1
1
1
1






+ bx2







1
2
3
4












=







1
2
3
4






·







1
−1
−3
−5






.

a) By computing the dot products, convert this into two linear equations in the
two unknowns bx1 and bx2.

b) Solve for bx1 and bx2, and compute the orthogonal projection

bV = bx1







1
1
1
1






+ bx2







1
2
3
4






.

c) Confirm that the vector bV⊥ = b− bV is orthogonal to V by checking that

bV⊥ · (1,1, 1,1) = 0 and bV⊥ · (1,2, 3,4) = 0.
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d) Write down a matrix A whose column are the two vectors which span V , and
compute AT A, the matrix of column dot products. Compute the vector AT b.
Explain where the matrix equation AT Abx = AT b (the normal equation) appears
in a) and b), and also where the product bV = Abx appears.

Solution.
a) Using distributivity of dot products with respect to addition, these equations

become
4bx1 + 10bx2 = −8

10bx1 + 30bx2 = −30.

b) We solve these two equations by forming an augmented matrix and performing
Gauss–Jordan elimination:

�

4 10 −8
10 30 −30

�

RREF
�

1 0 3
0 1 −2

�

.

Therefore bx1 = 3, bx2 = −2, and

bV = 3







1
1
1
1






− 2







1
2
3
4






=







1
−1
−3
−5






.

(The fact that b = bV means that b ∈ V .)

c) bV⊥ = b− bV = 0, so bV⊥ is orthogonal to V .

d) AT A=
�

4 10
10 30

�

AT b =
�

−8
−30

�

The equation AT Abx = AT b is the same as the system of equations

4bx1 + 10bx2 = −8
10bx1 + 30bx2 = −30

from a). The equation bV = Abx is the same as the equation

bV = bx1







1
1
1
1






+ bx2







1
2
3
4






.
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4. Projection matrices for planes
Consider the plane

V = Span

















1
1
1
1






,







1
2
3
4

















in R4.

a) Compute the projection matrix PV for the subspace V . (Feel free to use a com-
puter.)

b) Explain why the first two columns of I4 − PV form a basis for V⊥.

c) Use your answer to b) to describe the plane V via two implicit equations:

V =

















x1
x2
x3
x4






∈ R4 :

c1 x1 + c2 x2 + c3 x3 + c4 x4 = 0
d1 x1 + d2 x2 + d3 x3 + d4 x4 = 0











.

What are the coefficients (c1, c2, c3, c4) and (d1, d2, d3, d4), and why? Confirm
that every vector in V satisfies these equations by checking that both (1, 1,1, 1)
and (1,2, 3,4) do.

Solution.
a) The projection matrix is

PV =







1 1
1 2
1 3
1 4







�

4 10
10 30

�−1







1 1
1 2
1 3
1 4







T

.

We compute the inverse:
�

4 10
10 30

�−1

=
1

120− 100

�

30 −10
−10 4

�

=
1
10

�

15 −5
−5 2

�

.
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Then

PV =







1 1
1 2
1 3
1 4







1
10

�

15 −5
−5 2

�







1 1
1 2
1 3
1 4







T

=
1
10







10 −3
5 −1
0 1
−5 3







�

1 1 1 1
1 2 3 4

�

=
1
10







7 4 1 −2
4 3 2 1
1 2 3 4
−2 1 4 7






.

b) We have

PV⊥ = I4 − PV =
1

10







3 −4 −1 2
−4 7 −2 −1
−1 −2 7 −4

2 −1 −4 3






.

Since V is a plane, we have dim(V ) = 2, so dim(V⊥) = 4 − dim(V ) = 2,
and hence V⊥ is also a plane. The column space of a projection matrix is the
subspace it projects on to, so Col(PV⊥) = V⊥. The first two columns of PV⊥ are
not collinear, so they form a basis for V⊥.

c) Scaling the first two columns of PV⊥ by 10 gives another basis for V⊥, so

V⊥ = Span

















3
−4
−1

2






,







−4
7
−2
−1

















= Col







3 −4
−4 7
−1 −2

2 −1






.

Now we use the relation V = (V⊥)⊥ to conclude

V = Col







3 −4
−4 7
−1 −2

2 −1







⊥

= Nul
�

3 −4 −1 2
−4 7 −2 −1

�

=

















x1
x2
x3
x4






∈ R4 :

3x1 − 4x2 − x3 + 2x4 = 0

−4x1 + 7x2 − 2x3 − x4 = 0











Both equations are satisfied by the vectors (1, 1,1, 1) and (1, 2,3, 4)—this con-
firms that we have found correct equations.
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5. Projection matrices for lines
For each line L, compute the projection matrix PL.

a) L = Span{(1,1)} b) L = Span{(1, 2,3)}

c) L =
�

(x , y, z) ∈ R3 : 2x + y + z = 0
	⊥

Solution.

a) PL =
1

�

1
1

�

·
�

1
1

�

�

1 1
�

�

1
1

�

=
1
2

�

1 1
1 1

�

b) PL =
1

 

1
2
3

!

·

 

1
2
3

!

�

1 2 3
�

 

1
2
3

!

=
1

14

 

1 2 3
2 4 6
3 6 9

!

c) This line is equal to

Nul
�

2 1 1
�⊥
= Row

�

2 1 1
�

= Span

( 

2
1
1

!)

.

Therefore,

PL =
1

 

2
1
1

!

·

 

2
1
1

!

�

2 1 1
�

 

2
1
1

!

=
1
6

 

4 2 2
2 1 1
2 1 1

!

.
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6. Some mistakes to avoid
Here is a false “fact”:

Every projection matrix PV equals the identity matrix In.

Here is a false “proof”:

PV = A(AT A)−1AT = AA−1(AT )−1AT = (AA−1)((AT )−1AT ) = In · In = In.

a) What is wrong would this proof?

b) In what case would this proof be correct?

Now consider the subspace V = Col(A) for

A=







1 2 3
1 1 2
1 1 2
−1 2 1






.

c) It would be incorrect to say that PV = A(AT A)−1AT is the projection matrix
onto V . Why?
Hint: Try computing PV —what goes wrong?

d) Find a matrix B so that PV = B(BT B)−1BT is the projection matrix onto V—you
do not need to compute PV .

Solution.
a) The step (AT A)−1 = A−1(AT )−1 is incorrect—it only works when A is square.

b) The proof is correct when A is an invertible n×n matrix. In this case, Col(A) =
Rn because A has full row rank, so the projection matrix onto Col(A) is indeed
the identity matrix.

c) Since the columns of A are not linearly independent, the matrix AT A is not
invertible.

d) The first two columns of A are its pivot columns. This means that, if we re-
move the third column of A, we get a new matrix B with full column rank and
Col(B) = V . We can use this matrix to compute PV = B(BT B)−1BT .


